Super-resolution microscopy based on the inherent fluctuations of dye molecules.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-02-04 eCollection Date: 2025-03-01 DOI:10.1364/BOE.533263
Alexander Krupinski-Ptaszek, Adrian Makowski, Aleksandra Mielnicka, Monika Pawłowska, Ron Tenne, Radek Lapkiewicz
{"title":"Super-resolution microscopy based on the inherent fluctuations of dye molecules.","authors":"Alexander Krupinski-Ptaszek, Adrian Makowski, Aleksandra Mielnicka, Monika Pawłowska, Ron Tenne, Radek Lapkiewicz","doi":"10.1364/BOE.533263","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence microscopy is a critical tool across various disciplines, from materials science to biomedical research, yet it is limited by the diffraction limit of resolution. Advanced super-resolution techniques such as localization microscopy and stimulated-emission-depletion microscopy often demand considerable resources. These methods depend heavily on elaborate sample-staining, complex optical systems, or prolonged acquisition periods, and their application in 3D and multicolor imaging presents significant experimental challenges. In the current work, we provide a complete demonstration of a widely accessible super-resolution imaging approach capable of 3D and multicolor imaging based on super-resolution optical fluctuation imaging (SOFI). We replace the confocal pinhole with an array of single-photon avalanche diodes and use the microsecond-scale fluctuations of dye molecules as a contrast mechanism. This contrast is transformed into a super-resolved image using a robust and deterministic algorithm. Our technique utilizes natural fluctuations inherent to organic dyes, thereby it does not require engineering of the blinking statistics. Our robust, versatile super-resolution method opens the way to next-generation multimodal imaging and facilitates on-demand super-resolution within a confocal architecture.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 3","pages":"910-921"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.533263","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescence microscopy is a critical tool across various disciplines, from materials science to biomedical research, yet it is limited by the diffraction limit of resolution. Advanced super-resolution techniques such as localization microscopy and stimulated-emission-depletion microscopy often demand considerable resources. These methods depend heavily on elaborate sample-staining, complex optical systems, or prolonged acquisition periods, and their application in 3D and multicolor imaging presents significant experimental challenges. In the current work, we provide a complete demonstration of a widely accessible super-resolution imaging approach capable of 3D and multicolor imaging based on super-resolution optical fluctuation imaging (SOFI). We replace the confocal pinhole with an array of single-photon avalanche diodes and use the microsecond-scale fluctuations of dye molecules as a contrast mechanism. This contrast is transformed into a super-resolved image using a robust and deterministic algorithm. Our technique utilizes natural fluctuations inherent to organic dyes, thereby it does not require engineering of the blinking statistics. Our robust, versatile super-resolution method opens the way to next-generation multimodal imaging and facilitates on-demand super-resolution within a confocal architecture.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信