OAH-Net: a deep neural network for efficient and robust hologram reconstruction for off-axis digital holographic microscopy.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-02-04 eCollection Date: 2025-03-01 DOI:10.1364/BOE.547292
Wei Liu, Kerem Delikoyun, Qianyu Chen, Alperen Yildiz, Si Ko Myo, Win Sen Kuan, John Tshon Yit Soong, Matthew Edward Cove, Oliver Hayden, Hwee Kuan Lee
{"title":"OAH-Net: a deep neural network for efficient and robust hologram reconstruction for off-axis digital holographic microscopy.","authors":"Wei Liu, Kerem Delikoyun, Qianyu Chen, Alperen Yildiz, Si Ko Myo, Win Sen Kuan, John Tshon Yit Soong, Matthew Edward Cove, Oliver Hayden, Hwee Kuan Lee","doi":"10.1364/BOE.547292","DOIUrl":null,"url":null,"abstract":"<p><p>Off-axis digital holographic microscopy is a high-throughput, label-free imaging technology that provides three-dimensional, high-resolution information about samples, which is particularly useful in large-scale cellular imaging. However, the hologram reconstruction process poses a significant bottleneck for timely data analysis. To address this challenge, we propose a novel reconstruction approach that integrates deep learning with the physical principles of off-axis holography. We initialized part of the network weights based on the physical principle and then fine-tuned them via supersized learning. Our off-axis hologram network (OAH-Net) retrieves phase and amplitude images with errors that fall within the measurement error range attributable to hardware, and its reconstruction speed significantly surpasses the microscope's acquisition rate. Crucially, OAH-Net, trained and validated on diluted whole blood samples, demonstrates remarkable external generalization capabilities on unseen samples with distinct patterns. Additionally, it can be seamlessly integrated with other models for downstream tasks, enabling end-to-end real-time hologram analysis. This capability further expands off-axis holography's applications in both biological and medical studies.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 3","pages":"894-909"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919354/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.547292","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Off-axis digital holographic microscopy is a high-throughput, label-free imaging technology that provides three-dimensional, high-resolution information about samples, which is particularly useful in large-scale cellular imaging. However, the hologram reconstruction process poses a significant bottleneck for timely data analysis. To address this challenge, we propose a novel reconstruction approach that integrates deep learning with the physical principles of off-axis holography. We initialized part of the network weights based on the physical principle and then fine-tuned them via supersized learning. Our off-axis hologram network (OAH-Net) retrieves phase and amplitude images with errors that fall within the measurement error range attributable to hardware, and its reconstruction speed significantly surpasses the microscope's acquisition rate. Crucially, OAH-Net, trained and validated on diluted whole blood samples, demonstrates remarkable external generalization capabilities on unseen samples with distinct patterns. Additionally, it can be seamlessly integrated with other models for downstream tasks, enabling end-to-end real-time hologram analysis. This capability further expands off-axis holography's applications in both biological and medical studies.

OAH-Net:用于离轴数字全息显微镜的高效、鲁棒全息图重建的深度神经网络。
离轴数字全息显微镜是一种高通量、无标签成像技术,可提供有关样品的三维、高分辨率信息,这在大规模细胞成像中特别有用。然而,全息图重建过程对数据的及时分析造成了很大的瓶颈。为了应对这一挑战,我们提出了一种新的重建方法,该方法将深度学习与离轴全息术的物理原理相结合。我们根据物理原理初始化部分网络权重,然后通过超大学习对其进行微调。我们的离轴全息图网络(OAH-Net)检索相位和振幅图像,其误差落在由硬件引起的测量误差范围内,其重建速度明显超过显微镜的采集速率。至关重要的是,OAH-Net在稀释的全血样本上进行了训练和验证,在具有不同模式的未见样本上展示了显著的外部泛化能力。此外,它可以与下游任务的其他模型无缝集成,实现端到端的实时全息图分析。这种能力进一步扩展了离轴全息术在生物和医学研究中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信