Monitoring photobiomodulation of amyloid-β aggregation in 3D cultured cells using label-free nonlinear optical imaging.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-02-24 eCollection Date: 2025-03-01 DOI:10.1364/BOE.549594
Ting Zhou, Renlong Zhang, Tymish Y Ohulchanskyy, Junle Qu
{"title":"Monitoring photobiomodulation of amyloid-β aggregation in 3D cultured cells using label-free nonlinear optical imaging.","authors":"Ting Zhou, Renlong Zhang, Tymish Y Ohulchanskyy, Junle Qu","doi":"10.1364/BOE.549594","DOIUrl":null,"url":null,"abstract":"<p><p>The accumulation of beta-amyloid (Aβ) peptide aggregates, commonly known as plaques, is considered a key hallmark in the development of Alzheimer's disease (AD). Recently, low-level light therapy (LLLT), also referred to as photobiomodulation (PBM), has emerged as a promising treatment approach for AD. Previous studies have shown that PBM reduces Aβ load primarily by enhancing the clearance capabilities of glia cells. However, it remains unclear whether PBM can directly reduce the formation of Aβ plaques in neuronal cells independent of the glia cell effect. In this study, we employed three-dimensional (3D) cultured HEK 293 APPsw cells as an AD model to investigate the impact of PBM on Aβ aggregation. We demonstrated that label-free two-photon excited fluorescence (TPEF) imaging and second harmonic generation (SHG) imaging are effective tools for monitoring Aβ aggregation in 3D cell models. The TPEF imaging results and subsequent quantification revealed that PBM, particularly with low-level near-infrared light from an 808 nm laser (compared to 1064, 1210, and 1470 nm lasers), significantly reduced Aβ aggregation, specifically plaques formation, in the 3D cultured cells, with the effect found to be dose-dependent. Moreover, a comprehensive analysis of protein expression in the 3D cultured cells revealed that PBM induces overexpression of the LRP1 receptor, which mediates Aβ degradation and thus leads to the reduction of Aβ aggregation. This study highlights the use of label-free nonlinear optical imaging to monitor Aβ aggregation in AD progression and provides novel insights into the effects of PBM on Aβ plaque formation in AD models.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 3","pages":"1143-1155"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919351/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.549594","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The accumulation of beta-amyloid (Aβ) peptide aggregates, commonly known as plaques, is considered a key hallmark in the development of Alzheimer's disease (AD). Recently, low-level light therapy (LLLT), also referred to as photobiomodulation (PBM), has emerged as a promising treatment approach for AD. Previous studies have shown that PBM reduces Aβ load primarily by enhancing the clearance capabilities of glia cells. However, it remains unclear whether PBM can directly reduce the formation of Aβ plaques in neuronal cells independent of the glia cell effect. In this study, we employed three-dimensional (3D) cultured HEK 293 APPsw cells as an AD model to investigate the impact of PBM on Aβ aggregation. We demonstrated that label-free two-photon excited fluorescence (TPEF) imaging and second harmonic generation (SHG) imaging are effective tools for monitoring Aβ aggregation in 3D cell models. The TPEF imaging results and subsequent quantification revealed that PBM, particularly with low-level near-infrared light from an 808 nm laser (compared to 1064, 1210, and 1470 nm lasers), significantly reduced Aβ aggregation, specifically plaques formation, in the 3D cultured cells, with the effect found to be dose-dependent. Moreover, a comprehensive analysis of protein expression in the 3D cultured cells revealed that PBM induces overexpression of the LRP1 receptor, which mediates Aβ degradation and thus leads to the reduction of Aβ aggregation. This study highlights the use of label-free nonlinear optical imaging to monitor Aβ aggregation in AD progression and provides novel insights into the effects of PBM on Aβ plaque formation in AD models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信