Fast blood flow index reconstruction of diffuse correlation spectroscopy using a back-propagation-free data-driven algorithm.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-02-26 eCollection Date: 2025-03-01 DOI:10.1364/BOE.549363
Zhenya Zang, Mingliang Pan, Yuanzhe Zhang, David Day Uei Li
{"title":"Fast blood flow index reconstruction of diffuse correlation spectroscopy using a back-propagation-free data-driven algorithm.","authors":"Zhenya Zang, Mingliang Pan, Yuanzhe Zhang, David Day Uei Li","doi":"10.1364/BOE.549363","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a fast and accurate online training method for blood flow index (BFI) and relative BFI (rBFI) reconstruction in diffuse correlation spectroscopy (DCS). We implement rigorous mathematical models to simulate the auto-correlation functions (<i>g</i> <sub>2</sub>) for semi-infinite homogeneous and three-layer human brain models. We implemented a fast online training algorithm known as random vector functional link (RVFL) to reconstruct BFI from noisy <i>g</i> <sub>2</sub>. We extensively evaluated RVFL regarding both speed and accuracy for training and inference. Moreover, we compared RVFL with extreme learning machine (ELM) architecture, a conventional convolutional neural network (CNN), and three fitting algorithms. Results from semi-infinite and three-layer models indicate that RVFL achieves higher accuracy than the other algorithms, as evidenced by comprehensive metrics. While RVFL offers comparable accuracy to CNNs, it boosts training speeds that are 3900-fold faster and inference speeds that are 19.8-fold faster, enhancing its generalizability across different experimental settings. We also used <i>g</i> <sub>2</sub> from one- and three-layer Monte Carlo (MC)-based <i>in-silico</i> simulations, as well as from analytical models, to compare the accuracy and consistency of the results obtained from RVFL and ELM. Furthermore, we discuss how RVFL is more suitable for embedded hardware due to its lower computational complexity than ELM and CNN for training and inference.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 3","pages":"1254-1269"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.549363","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a fast and accurate online training method for blood flow index (BFI) and relative BFI (rBFI) reconstruction in diffuse correlation spectroscopy (DCS). We implement rigorous mathematical models to simulate the auto-correlation functions (g 2) for semi-infinite homogeneous and three-layer human brain models. We implemented a fast online training algorithm known as random vector functional link (RVFL) to reconstruct BFI from noisy g 2. We extensively evaluated RVFL regarding both speed and accuracy for training and inference. Moreover, we compared RVFL with extreme learning machine (ELM) architecture, a conventional convolutional neural network (CNN), and three fitting algorithms. Results from semi-infinite and three-layer models indicate that RVFL achieves higher accuracy than the other algorithms, as evidenced by comprehensive metrics. While RVFL offers comparable accuracy to CNNs, it boosts training speeds that are 3900-fold faster and inference speeds that are 19.8-fold faster, enhancing its generalizability across different experimental settings. We also used g 2 from one- and three-layer Monte Carlo (MC)-based in-silico simulations, as well as from analytical models, to compare the accuracy and consistency of the results obtained from RVFL and ELM. Furthermore, we discuss how RVFL is more suitable for embedded hardware due to its lower computational complexity than ELM and CNN for training and inference.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信