Adaptive Raman spectral unmixing method based on Voigt peak compensation for quantitative analysis of cellular biochemical components.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-02-28 eCollection Date: 2025-03-01 DOI:10.1364/BOE.553461
Xiang Chen, Ping Tang, Jianhui Wan, Weina Zhang, Liyun Zhong
{"title":"Adaptive Raman spectral unmixing method based on Voigt peak compensation for quantitative analysis of cellular biochemical components.","authors":"Xiang Chen, Ping Tang, Jianhui Wan, Weina Zhang, Liyun Zhong","doi":"10.1364/BOE.553461","DOIUrl":null,"url":null,"abstract":"<p><p>Raman spectroscopy, with its unique \"molecular fingerprint\" characteristics, is an essential tool for label-free, non-invasive biochemical analysis of cells. It provides precise information on cellular biochemical components, such as proteins, lipids, and nucleic acids by analyzing molecular vibrational modes. However, overlapping Raman spectral signals make spectral unmixing crucial for accurate quantification. Traditional unmixing methods face challenges: unsupervised algorithms yield poorly interpretable results, while supervised methods like BCA rely heavily on accurate reference spectra and are sensitive to environmental changes (e.g., pH, temperature, excitation wavelength), causing spectral distortion and reducing quantitative reliability. This study addresses these challenges by introducing a parameterized Voigt function into the linear spectral mixing model for element spectrum compensation, using iterative least-squares optimization for adaptive unmixing and quantitative analysis. Simulations show that the Voigt-compensated unmixing algorithm improves spectral fitting accuracy and robustness. Applied to Raman spectra from Hela cell apoptosis and iPSCs differentiation, the algorithm accurately tracks biochemical molecular changes, proving its applicability in cellular Raman spectral analysis and a precise, reliable, and versatile tool for quantitative biochemical analysis.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 3","pages":"1284-1298"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.553461","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Raman spectroscopy, with its unique "molecular fingerprint" characteristics, is an essential tool for label-free, non-invasive biochemical analysis of cells. It provides precise information on cellular biochemical components, such as proteins, lipids, and nucleic acids by analyzing molecular vibrational modes. However, overlapping Raman spectral signals make spectral unmixing crucial for accurate quantification. Traditional unmixing methods face challenges: unsupervised algorithms yield poorly interpretable results, while supervised methods like BCA rely heavily on accurate reference spectra and are sensitive to environmental changes (e.g., pH, temperature, excitation wavelength), causing spectral distortion and reducing quantitative reliability. This study addresses these challenges by introducing a parameterized Voigt function into the linear spectral mixing model for element spectrum compensation, using iterative least-squares optimization for adaptive unmixing and quantitative analysis. Simulations show that the Voigt-compensated unmixing algorithm improves spectral fitting accuracy and robustness. Applied to Raman spectra from Hela cell apoptosis and iPSCs differentiation, the algorithm accurately tracks biochemical molecular changes, proving its applicability in cellular Raman spectral analysis and a precise, reliable, and versatile tool for quantitative biochemical analysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信