Microplastics and nanoplastics: emerging threats to cardiovascular health - a comprehensive review.

IF 1.7 Q2 MEDICINE, GENERAL & INTERNAL
Annals of Medicine and Surgery Pub Date : 2025-01-09 eCollection Date: 2025-01-01 DOI:10.1097/MS9.0000000000002831
Hamza Irfan, Haider Irfan, Muhammad Ahtesham Khan, Oyku Inanc, Md Al Hasibuzzaman
{"title":"Microplastics and nanoplastics: emerging threats to cardiovascular health - a comprehensive review.","authors":"Hamza Irfan, Haider Irfan, Muhammad Ahtesham Khan, Oyku Inanc, Md Al Hasibuzzaman","doi":"10.1097/MS9.0000000000002831","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Global plastic production surged to 400.3 million metric tons in 2022, contributing significantly to environmental pollution. Projections estimate that 13.2 billion tons of plastic waste will be present in ecosystems by 2050. This increase in plastic production has led to substantial human exposure to microplastics (MPs) and nanoplastics (NPs). While their environmental and general health impacts are well-documented, the specific effects on cardiovascular health remain underexplored.</p><p><strong>Objectives: </strong>This review aims to examine the presence of MPs and NPs in the environment, their routes of human exposure, and their toxicological implications for the cardiovascular system (CVS), focusing on oxidative stress, apoptosis, cardiac fibrosis, and major adverse cardiovascular events (MACE).</p><p><strong>Methods: </strong>A comprehensive literature review was conducted using PubMed, Scopus, and Google Scholar. Relevant studies from the past 10 years were selected based on keywords like \"microplastics,\" \"nanoplastics,\" and \"cardiovascular health.\"</p><p><strong>Results: </strong>MPs and NPs are found in air, water, and food, entering the human body primarily through inhalation, ingestion, and dermal contact. These particles induce oxidative stress, mitochondrial dysfunction, and apoptosis, which impair cardiovascular health. MPs have been detected in arterial tissues, particularly in atherosclerotic plaques, correlating with increased MACE risk. MP exposure is linked to VC, reduced vessel flexibility, and increased thrombosis severity. Additionally, MPs contribute to inflammation and lipid metabolism disruption, which further exacerbate heart disease.</p><p><strong>Conclusion: </strong>The evidence suggests a concerning link between plastic exposure and cardiovascular health, highlighting the urgent need for further research to understand the long-term effects of MPs and NPs on CVSs.</p>","PeriodicalId":8025,"journal":{"name":"Annals of Medicine and Surgery","volume":"87 1","pages":"209-216"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11918686/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Medicine and Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/MS9.0000000000002831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Global plastic production surged to 400.3 million metric tons in 2022, contributing significantly to environmental pollution. Projections estimate that 13.2 billion tons of plastic waste will be present in ecosystems by 2050. This increase in plastic production has led to substantial human exposure to microplastics (MPs) and nanoplastics (NPs). While their environmental and general health impacts are well-documented, the specific effects on cardiovascular health remain underexplored.

Objectives: This review aims to examine the presence of MPs and NPs in the environment, their routes of human exposure, and their toxicological implications for the cardiovascular system (CVS), focusing on oxidative stress, apoptosis, cardiac fibrosis, and major adverse cardiovascular events (MACE).

Methods: A comprehensive literature review was conducted using PubMed, Scopus, and Google Scholar. Relevant studies from the past 10 years were selected based on keywords like "microplastics," "nanoplastics," and "cardiovascular health."

Results: MPs and NPs are found in air, water, and food, entering the human body primarily through inhalation, ingestion, and dermal contact. These particles induce oxidative stress, mitochondrial dysfunction, and apoptosis, which impair cardiovascular health. MPs have been detected in arterial tissues, particularly in atherosclerotic plaques, correlating with increased MACE risk. MP exposure is linked to VC, reduced vessel flexibility, and increased thrombosis severity. Additionally, MPs contribute to inflammation and lipid metabolism disruption, which further exacerbate heart disease.

Conclusion: The evidence suggests a concerning link between plastic exposure and cardiovascular health, highlighting the urgent need for further research to understand the long-term effects of MPs and NPs on CVSs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Medicine and Surgery
Annals of Medicine and Surgery MEDICINE, GENERAL & INTERNAL-
自引率
5.90%
发文量
1665
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信