Biomimetic Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid in Deep Eutectic Solvents through the Efficient Electron Transfer.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-03-19 DOI:10.1002/cssc.202402589
Xingyao Wei, Fuhao Chu, Weiguang Wang, Qiaohong Zhang, Dongmei Hao, Zhiguo Zhu, Kaixuan Yang, Chen Chen, Hongying Lü
{"title":"Biomimetic Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid in Deep Eutectic Solvents through the Efficient Electron Transfer.","authors":"Xingyao Wei, Fuhao Chu, Weiguang Wang, Qiaohong Zhang, Dongmei Hao, Zhiguo Zhu, Kaixuan Yang, Chen Chen, Hongying Lü","doi":"10.1002/cssc.202402589","DOIUrl":null,"url":null,"abstract":"<p><p>Selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) has long been a formidable challenge under mild conditions. Deep eutectic solvents (DESs) have shown remarkable efficiency in the oxidation of HMF as a sustainable solvent. These solvents not only enhance solubilization but also activate biomass-derived hydroxyl compounds via hydrogen bonds reconstruction. This study leverages the architecture and functionality of natural enzymes and coenzymes in the respiratory chain system to develop a unique biomimetic catalytic system. In this system, HMF is oxidized to FDCA in imidazole-based DESs with polyoxometalates as catalyst and para-benzoquinone as electron transfer mediators. The findings demonstrate that the adjustment of hydrogen bond acceptor (HBA) or hydrogen bond donor (HBD) enables precise control over the hydrogen bond strength in DESs, thereby accurately regulating the distribution of HMF oxidation products. Furthermore, the optimization of hydrogen bond strength can also activate the OH bond in HMF, consequently expediting the oxidation reaction. The cyclic voltammetry measurements provide compelling evidence of dioxygen activation and efficient electron transferring in a biomimetic catalytic system, resulting in a remarkable 21-fold increase in current density. This research not only advances utilization and development of biomass resources but also offers novel perspectives into constructing efficient catalytic oxidation systems.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2402589"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402589","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) has long been a formidable challenge under mild conditions. Deep eutectic solvents (DESs) have shown remarkable efficiency in the oxidation of HMF as a sustainable solvent. These solvents not only enhance solubilization but also activate biomass-derived hydroxyl compounds via hydrogen bonds reconstruction. This study leverages the architecture and functionality of natural enzymes and coenzymes in the respiratory chain system to develop a unique biomimetic catalytic system. In this system, HMF is oxidized to FDCA in imidazole-based DESs with polyoxometalates as catalyst and para-benzoquinone as electron transfer mediators. The findings demonstrate that the adjustment of hydrogen bond acceptor (HBA) or hydrogen bond donor (HBD) enables precise control over the hydrogen bond strength in DESs, thereby accurately regulating the distribution of HMF oxidation products. Furthermore, the optimization of hydrogen bond strength can also activate the OH bond in HMF, consequently expediting the oxidation reaction. The cyclic voltammetry measurements provide compelling evidence of dioxygen activation and efficient electron transferring in a biomimetic catalytic system, resulting in a remarkable 21-fold increase in current density. This research not only advances utilization and development of biomass resources but also offers novel perspectives into constructing efficient catalytic oxidation systems.

5-羟甲基糠醛在深度共晶溶剂中通过高效电子转移仿生有氧氧化制2,5-呋喃二羧酸。
在温和条件下,5-羟甲基糠醛(HMF)选择性氧化生成2,5-呋喃二羧酸(FDCA)一直是一个艰巨的挑战。深共晶溶剂(DESs)作为一种可持续溶剂,在HMF的氧化中表现出了显著的效率。这些溶剂不仅增强了增溶作用,而且通过氢键重建激活了生物质衍生的羟基化合物。本研究利用呼吸链系统中天然酶和辅酶的结构和功能,开发了一种独特的仿生催化系统。在该体系中,HMF在咪唑基DESs中以多金属氧酸盐(POM)为催化剂,对苯醌(PBQ)为电子转移介质(etm)氧化为FDCA。结果表明,调节HBA或HBD可以精确控制DESs中的氢键强度,从而精确调节HMF氧化产物的分布。此外,优化氢键强度还可以激活HMF中的O-H键,从而加速氧化反应。循环伏安法测量提供了令人信服的证据,证明在仿生催化系统中双氧活化和有效的电子转移,导致电流密度显著增加21倍。该研究不仅促进了生物质资源的利用和开发,而且为构建高效的催化氧化体系提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信