Automated Refinement of Property-Specific Polarizable Gaussian Multipole Water Models Using Bayesian Black-Box Optimization.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Yongxian Wu, Qiang Zhu, Zhen Huang, Piotr Cieplak, Yong Duan, Ray Luo
{"title":"Automated Refinement of Property-Specific Polarizable Gaussian Multipole Water Models Using Bayesian Black-Box Optimization.","authors":"Yongxian Wu, Qiang Zhu, Zhen Huang, Piotr Cieplak, Yong Duan, Ray Luo","doi":"10.1021/acs.jctc.5c00039","DOIUrl":null,"url":null,"abstract":"<p><p>The critical importance of water in sustaining life highlights the need for accurate water models in computer simulations, aiming to mimic biochemical processes experimentally. The polarizable Gaussian multipole (pGM) model, recently introduced for biomolecular simulations, improves the handling of complex biomolecular interactions. As an integral part of our initial exploration, we examined a minimalist fixed geometry three-center pGM water model using <i>ab initio</i> quantum mechanical calculations of water oligomers. However, our final model development was based on liquid-phase water properties, leveraging automated machine learning (AutoML) techniques for optimization. This allows the development of a framework to refine both van der Waals and electrostatic parameters of the pGM model, aiming to accurately reproduce specific properties such as the oxygen-oxygen radial distribution function, density, and dipole moment, all at 298 K and 1.0 bar pressure. The efficacy of the optimized three-center pGM water model, pGM3P-25, was assessed through simulations of a water box of 512 water molecules, showcasing marked enhancements in both accuracy and practical utility. Notably, the model accurately reproduces thermodynamic properties not explicitly included in training while significantly reducing the time and human effort required for optimization. It was found that pGM3P-25 can reproduce temperature-dependent properties such as density, self-diffusion constants, heat capacity, second virial coefficient, and dielectric constant, which are important in biomolecular simulations. This study underscores the potential of AutoML-driven frameworks to streamline parameter refinement for molecular dynamics simulations, paving the way for broader applications in computational chemistry and beyond.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The critical importance of water in sustaining life highlights the need for accurate water models in computer simulations, aiming to mimic biochemical processes experimentally. The polarizable Gaussian multipole (pGM) model, recently introduced for biomolecular simulations, improves the handling of complex biomolecular interactions. As an integral part of our initial exploration, we examined a minimalist fixed geometry three-center pGM water model using ab initio quantum mechanical calculations of water oligomers. However, our final model development was based on liquid-phase water properties, leveraging automated machine learning (AutoML) techniques for optimization. This allows the development of a framework to refine both van der Waals and electrostatic parameters of the pGM model, aiming to accurately reproduce specific properties such as the oxygen-oxygen radial distribution function, density, and dipole moment, all at 298 K and 1.0 bar pressure. The efficacy of the optimized three-center pGM water model, pGM3P-25, was assessed through simulations of a water box of 512 water molecules, showcasing marked enhancements in both accuracy and practical utility. Notably, the model accurately reproduces thermodynamic properties not explicitly included in training while significantly reducing the time and human effort required for optimization. It was found that pGM3P-25 can reproduce temperature-dependent properties such as density, self-diffusion constants, heat capacity, second virial coefficient, and dielectric constant, which are important in biomolecular simulations. This study underscores the potential of AutoML-driven frameworks to streamline parameter refinement for molecular dynamics simulations, paving the way for broader applications in computational chemistry and beyond.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信