Nanoconfined Synthesis of CsPbBr3 Quantum Dots: Enhanced Stability, Tunable Luminescence, and Sensitive Sensing Application.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-04-02 Epub Date: 2025-03-20 DOI:10.1021/acsami.4c22763
Kaixiang Cui, Yong Chen, Keyu Xie, Haonan Peng, Liping Ding, Yu Fang
{"title":"Nanoconfined Synthesis of CsPbBr<sub>3</sub> Quantum Dots: Enhanced Stability, Tunable Luminescence, and Sensitive Sensing Application.","authors":"Kaixiang Cui, Yong Chen, Keyu Xie, Haonan Peng, Liping Ding, Yu Fang","doi":"10.1021/acsami.4c22763","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of metal halide perovskite quantum dots (PQDs) into sensing technologies has been hindered by challenges in balancing environmental stability and sensing sensitivity. In this work, mesoporous silica nanoparticles (MSNs) with tunable pore sizes were employed as nanoconfinement reactors to synthesize size-controlled CsPbBr<sub>3</sub> PQDs (3.0-12.0 nm). The nanoconfined environment facilitated the selective growth of pure CsPbBr<sub>3</sub> phases, avoiding unwanted Cs<sub>4</sub>PbBr<sub>6</sub> formation. The resulting nanoconfined PQDs, CsPbBr<sub>3</sub>@MSN, exhibited tunable emission from blue to green (470 to 515 nm), a high quantum yield (36.8%), and enhanced stability. Moreover, the PQD composites demonstrated exceptional performance in detecting the pesticide dicloran, achieving a detection limit of 0.16 μM, far below China's national standard requirement (34.0 μM). The detection mechanism involved competitive adsorption and phase transitions from the cubic CsPbBr<sub>3</sub> phase to the quasi-2D CsPb<sub>2</sub>Br<sub>5</sub> phase. The porous MSN structure maintained efficient mass and energy transfer, ensuring both stability and sensitivity. Beyond sensing, these nanocomposites show potential for applications in anticounterfeiting and fingerprint recognition. This study highlights nanoconfinement as a powerful strategy for developing robust, high-performance PQD-based fluorescent sensors.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"20075-20086"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c22763","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of metal halide perovskite quantum dots (PQDs) into sensing technologies has been hindered by challenges in balancing environmental stability and sensing sensitivity. In this work, mesoporous silica nanoparticles (MSNs) with tunable pore sizes were employed as nanoconfinement reactors to synthesize size-controlled CsPbBr3 PQDs (3.0-12.0 nm). The nanoconfined environment facilitated the selective growth of pure CsPbBr3 phases, avoiding unwanted Cs4PbBr6 formation. The resulting nanoconfined PQDs, CsPbBr3@MSN, exhibited tunable emission from blue to green (470 to 515 nm), a high quantum yield (36.8%), and enhanced stability. Moreover, the PQD composites demonstrated exceptional performance in detecting the pesticide dicloran, achieving a detection limit of 0.16 μM, far below China's national standard requirement (34.0 μM). The detection mechanism involved competitive adsorption and phase transitions from the cubic CsPbBr3 phase to the quasi-2D CsPb2Br5 phase. The porous MSN structure maintained efficient mass and energy transfer, ensuring both stability and sensitivity. Beyond sensing, these nanocomposites show potential for applications in anticounterfeiting and fingerprint recognition. This study highlights nanoconfinement as a powerful strategy for developing robust, high-performance PQD-based fluorescent sensors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信