High-Performance Electromagnetic Interference Shielding and Photothermal Superhydrophobicity Achieved by Nuclear Sheath Stacking in Three-Dimensional Honeycomb Structure and Multi-Level Heterogeneous Interfaces.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-04-02 Epub Date: 2025-03-20 DOI:10.1021/acsami.5c01232
Jie Mei, Huimin Liao, Hongjian Huang, Hao Tu, Fang Yao, Shuai Zhao, Jian Wang
{"title":"High-Performance Electromagnetic Interference Shielding and Photothermal Superhydrophobicity Achieved by Nuclear Sheath Stacking in Three-Dimensional Honeycomb Structure and Multi-Level Heterogeneous Interfaces.","authors":"Jie Mei, Huimin Liao, Hongjian Huang, Hao Tu, Fang Yao, Shuai Zhao, Jian Wang","doi":"10.1021/acsami.5c01232","DOIUrl":null,"url":null,"abstract":"<p><p>The unpredictable and extremely cold weather conditions, combined with increasing electromagnetic pollution, have posed a serious threat to human health and socioeconomic well-being. However, existing deicing technologies and electromagnetic interference (EMI) materials lack adaptability to low-temperature, high-humidity environments. This study developed a lightweight asymmetric layered composite foam by integrating multilevel core-shell structures with heterogeneous core-shell fillers into a melamine foam (MF) matrix. Designed to leverage the differences in conductivity and dielectric constant between multiscale heterogeneous interfaces, this composite foam enhances the movement of free electrons and the relative displacement between electrons and atomic nuclei, thereby achieving efficient polarization and conduction losses. More than that, the unique feature of this composite lies in its ″absorption-absorption-reflection-reabsorption″ multilevel structure, enabling the composite to achieve an EMI shielding effectiveness of 70.7 dB in the X-band (8.2-12.4 GHz) and an absorption efficiency of 79.8%. Benefiting from the destructive interference of electromagnetic waves within the layered foam structure, the asymmetric composite foam (MHC-MNPF-ACN) exhibits superior absorption-dominated EMI shielding performance with excellent frequency selectivity. Additionally, by anchoring dual-size fillers onto the MF skeleton via impregnation adsorption to form a honeycomb-like 3D ″light-trapping″ network. This not only allows the composite foam to reach 93.6 °C under 1 sun, enabling rapid deicing within 160 s but also endows it with excellent superhydrophobicity and mechanical properties. These features provide a novel and multifunctional integrated approach to the fabrication of frequency-selective, absorption-dominated EMI shielding materials, proposing a new strategy for the protection of outdoor electromagnetic facilities in extremely low-temperature environments.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"20270-20283"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c01232","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The unpredictable and extremely cold weather conditions, combined with increasing electromagnetic pollution, have posed a serious threat to human health and socioeconomic well-being. However, existing deicing technologies and electromagnetic interference (EMI) materials lack adaptability to low-temperature, high-humidity environments. This study developed a lightweight asymmetric layered composite foam by integrating multilevel core-shell structures with heterogeneous core-shell fillers into a melamine foam (MF) matrix. Designed to leverage the differences in conductivity and dielectric constant between multiscale heterogeneous interfaces, this composite foam enhances the movement of free electrons and the relative displacement between electrons and atomic nuclei, thereby achieving efficient polarization and conduction losses. More than that, the unique feature of this composite lies in its ″absorption-absorption-reflection-reabsorption″ multilevel structure, enabling the composite to achieve an EMI shielding effectiveness of 70.7 dB in the X-band (8.2-12.4 GHz) and an absorption efficiency of 79.8%. Benefiting from the destructive interference of electromagnetic waves within the layered foam structure, the asymmetric composite foam (MHC-MNPF-ACN) exhibits superior absorption-dominated EMI shielding performance with excellent frequency selectivity. Additionally, by anchoring dual-size fillers onto the MF skeleton via impregnation adsorption to form a honeycomb-like 3D ″light-trapping″ network. This not only allows the composite foam to reach 93.6 °C under 1 sun, enabling rapid deicing within 160 s but also endows it with excellent superhydrophobicity and mechanical properties. These features provide a novel and multifunctional integrated approach to the fabrication of frequency-selective, absorption-dominated EMI shielding materials, proposing a new strategy for the protection of outdoor electromagnetic facilities in extremely low-temperature environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信