Improving the Efficiency of Ultrasound and Microbubble Mediated Gene Delivery by Manipulation of Microbubble Lipid Composition.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kushal Joshi, Amin Jafari Sojahrood, Rajiv Sanwal, Michael C Kolios, Scott S H Tsai, Warren L Lee
{"title":"Improving the Efficiency of Ultrasound and Microbubble Mediated Gene Delivery by Manipulation of Microbubble Lipid Composition.","authors":"Kushal Joshi, Amin Jafari Sojahrood, Rajiv Sanwal, Michael C Kolios, Scott S H Tsai, Warren L Lee","doi":"10.1021/acsabm.5c00033","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound and microbubble-mediated gene delivery is emerging as a powerful nonviral gene delivery approach due to its ability to target various tissues. Since microbubble cavitation plays a crucial role in gene delivery, factors affecting cavitation, such as microbubble composition, size, ultrasound pressure, frequency, and pulse interval, can directly affect the efficiency of gene delivery. The effect of ultrasound parameters on gene delivery efficiency has been systematically investigated in numerous studies. However, relatively few studies have investigated the influence of different microbubble compositions on gene delivery. In this paper, we report that microbubbles made with the same lipids but different poly(ethylene glycol) (PEG) derivatives lead to significantly different gene delivery efficiencies <i>in vitro</i>. Moreover, we show that the type of PEG derivative used in microbubble formulations greatly influences the acoustic response of microbubbles (i.e., resonance frequency and frequency-dependent attenuation coefficient), thus explaining the differences in gene delivery efficiencies. Our results highlight that changing a single component in the microbubble formulation, i.e., the type of PEG derivative, can improve gene delivery efficiency by 3-fold. This comparative study of microbubbles made with different PEG derivatives may help researchers in designing microbubble formulations for optimal gene delivery.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound and microbubble-mediated gene delivery is emerging as a powerful nonviral gene delivery approach due to its ability to target various tissues. Since microbubble cavitation plays a crucial role in gene delivery, factors affecting cavitation, such as microbubble composition, size, ultrasound pressure, frequency, and pulse interval, can directly affect the efficiency of gene delivery. The effect of ultrasound parameters on gene delivery efficiency has been systematically investigated in numerous studies. However, relatively few studies have investigated the influence of different microbubble compositions on gene delivery. In this paper, we report that microbubbles made with the same lipids but different poly(ethylene glycol) (PEG) derivatives lead to significantly different gene delivery efficiencies in vitro. Moreover, we show that the type of PEG derivative used in microbubble formulations greatly influences the acoustic response of microbubbles (i.e., resonance frequency and frequency-dependent attenuation coefficient), thus explaining the differences in gene delivery efficiencies. Our results highlight that changing a single component in the microbubble formulation, i.e., the type of PEG derivative, can improve gene delivery efficiency by 3-fold. This comparative study of microbubbles made with different PEG derivatives may help researchers in designing microbubble formulations for optimal gene delivery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信