Simulating a Stellar Binary Merger. II. Obtaining a Light Curve*

Roger W. M. Hatfull and Natalia Ivanova
{"title":"Simulating a Stellar Binary Merger. II. Obtaining a Light Curve*","authors":"Roger W. M. Hatfull and Natalia Ivanova","doi":"10.3847/1538-4357/ada6b8","DOIUrl":null,"url":null,"abstract":"Luminous red novae are enigmatic transient events distinguished by a rapid rise in luminosity, a plateau in luminosity, and spectra, which become redder with time. The best-observed system before, during, and after the outburst is V1309 Sco. We model a candidate V1309 Sco progenitor binary configuration (1.52 + 0.16 M⊙) using the smoothed particle hydrodynamics (SPH) code StarSmasher with a modified energy equation that implements flux-limited emission-diffusion radiative transport in a Lagrangian case. We developed an imaging technique allowing us to capture the flux an observer would measure. In this novel method, the outgoing radiative flux of each SPH particle in the observer's direction is attenuated by other particles along the path to the observer. We investigated how the light curve is affected in various models: with and without dust formation; constant, Planck, or Rosseland mean opacities; different donor star sizes; different companion star masses and types; radiative heating included in our modified energy equation; and different SPH simulation resolutions. The resulting evolution in bolometric luminosity and spectrum peak temperature is in good agreement with V1309 Sco observations. Our simulations rule out V1309 Sco models that do not assume dust formation.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ada6b8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Luminous red novae are enigmatic transient events distinguished by a rapid rise in luminosity, a plateau in luminosity, and spectra, which become redder with time. The best-observed system before, during, and after the outburst is V1309 Sco. We model a candidate V1309 Sco progenitor binary configuration (1.52 + 0.16 M⊙) using the smoothed particle hydrodynamics (SPH) code StarSmasher with a modified energy equation that implements flux-limited emission-diffusion radiative transport in a Lagrangian case. We developed an imaging technique allowing us to capture the flux an observer would measure. In this novel method, the outgoing radiative flux of each SPH particle in the observer's direction is attenuated by other particles along the path to the observer. We investigated how the light curve is affected in various models: with and without dust formation; constant, Planck, or Rosseland mean opacities; different donor star sizes; different companion star masses and types; radiative heating included in our modified energy equation; and different SPH simulation resolutions. The resulting evolution in bolometric luminosity and spectrum peak temperature is in good agreement with V1309 Sco observations. Our simulations rule out V1309 Sco models that do not assume dust formation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信