Contribution of soil Microbial Necromass Carbon to Soil Organic Carbon fractions and its influencing factors in different grassland types

IF 5.8 2区 农林科学 Q1 SOIL SCIENCE
Soil Pub Date : 2025-03-20 DOI:10.5194/egusphere-2025-1122
Shenggang Chen, Yaqi Zhang, Jun Ma, Mingyue Bai, Jinxiao Long, Ming Liu, Yinglong Chen, Jianbin Guo, Lin Chen
{"title":"Contribution of soil Microbial Necromass Carbon to Soil Organic Carbon fractions and its influencing factors in different grassland types","authors":"Shenggang Chen, Yaqi Zhang, Jun Ma, Mingyue Bai, Jinxiao Long, Ming Liu, Yinglong Chen, Jianbin Guo, Lin Chen","doi":"10.5194/egusphere-2025-1122","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Microbial necromass carbon(MNC) is a significant source of soil organic carbon (SOC), the quantitative contribution of MNC to distinct SOC fractions and its regulatory mechanisms across various grassland types remain largely unexplored. This study through a comprehensive investigation of soil profiles (0–20 cm, 20–40 cm, and 40–100 cm) across four grassland types in Ningxia, China, encompassing meadow steppe (MS), typical steppe (TS), desert steppe (DS), and steppe desert (SD). We quantified mineral-associated organic carbon (MAOC), particulate organic carbon (POC), and their respective microbial necromass components, including total microbial necromass carbon (TNC), fungal necromass carbon (FNC), and bacterial necromass carbon (BNC), and analyzed the contributions to SOC fractions and influencing factors. Our findings reveal three key insights. First, the contents of MAOC and POC in the 0–100 cm soil layer were in the following order of magnitude: Meadow steppe (MS) &gt;Typical steppe (TS) &gt; Desert steppe (DS) &gt; Steppe desert (SD), with the average content of POC was 9.3 g/kg, which was higher than the average content of MAOC (8.73 g/kg). Second, the content of microbial TNC in MAOC and POC decreased with the depth of the soil layer, the average content of FNC was 3.02 g/kg and 3.85 g/kg, which was higher than the average content of BNC (1.64 g/kg and 2.08 g/kg). FNC dominated both MAOC and POC, and its contribution was higher than the contribution of BNC. Thid, through regression analysis and random forest modeling, we identified key environmental drivers of MNC dynamics: mean annual rainfall (MAP), electrical conductance (EC), and soil total nitrogen(TN) emerged as primary regulators in surface soils (0–20cm), while available potassium(AK), SOC, and mean annual temperature (MAT) dominated deeper soil layers (20–100 cm). This research by: 1) establishing the vertical distribution patterns of MNC and SOC fractions in soil profiles; 2) quantifying the relative contributions of MNC to SOC fractions across different grassland ecosystems soil profiles and elucidating their environmental controls, offering a deeper understanding of the mechanisms driving MNC to soc fractions accumulation in diverse grassland ecosystems, and provide data support for further research on the microbiological mechanisms of soil organic carbon formation and accumulation in arid and semi-arid regions.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"37 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2025-1122","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Microbial necromass carbon(MNC) is a significant source of soil organic carbon (SOC), the quantitative contribution of MNC to distinct SOC fractions and its regulatory mechanisms across various grassland types remain largely unexplored. This study through a comprehensive investigation of soil profiles (0–20 cm, 20–40 cm, and 40–100 cm) across four grassland types in Ningxia, China, encompassing meadow steppe (MS), typical steppe (TS), desert steppe (DS), and steppe desert (SD). We quantified mineral-associated organic carbon (MAOC), particulate organic carbon (POC), and their respective microbial necromass components, including total microbial necromass carbon (TNC), fungal necromass carbon (FNC), and bacterial necromass carbon (BNC), and analyzed the contributions to SOC fractions and influencing factors. Our findings reveal three key insights. First, the contents of MAOC and POC in the 0–100 cm soil layer were in the following order of magnitude: Meadow steppe (MS) >Typical steppe (TS) > Desert steppe (DS) > Steppe desert (SD), with the average content of POC was 9.3 g/kg, which was higher than the average content of MAOC (8.73 g/kg). Second, the content of microbial TNC in MAOC and POC decreased with the depth of the soil layer, the average content of FNC was 3.02 g/kg and 3.85 g/kg, which was higher than the average content of BNC (1.64 g/kg and 2.08 g/kg). FNC dominated both MAOC and POC, and its contribution was higher than the contribution of BNC. Thid, through regression analysis and random forest modeling, we identified key environmental drivers of MNC dynamics: mean annual rainfall (MAP), electrical conductance (EC), and soil total nitrogen(TN) emerged as primary regulators in surface soils (0–20cm), while available potassium(AK), SOC, and mean annual temperature (MAT) dominated deeper soil layers (20–100 cm). This research by: 1) establishing the vertical distribution patterns of MNC and SOC fractions in soil profiles; 2) quantifying the relative contributions of MNC to SOC fractions across different grassland ecosystems soil profiles and elucidating their environmental controls, offering a deeper understanding of the mechanisms driving MNC to soc fractions accumulation in diverse grassland ecosystems, and provide data support for further research on the microbiological mechanisms of soil organic carbon formation and accumulation in arid and semi-arid regions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil
Soil Agricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍: SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences. SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信