Changes in plant functional trait composition modulate nitrogen effects on above-ground biomass in a temperate desert steppe

IF 3.9 2区 农林科学 Q1 AGRONOMY
Jingjuan Qiao, Xiaoan Zuo, Min Chen, Ping Yue, Shaokun Wang, Huaihai Wang, Zhaobin Song
{"title":"Changes in plant functional trait composition modulate nitrogen effects on above-ground biomass in a temperate desert steppe","authors":"Jingjuan Qiao, Xiaoan Zuo, Min Chen, Ping Yue, Shaokun Wang, Huaihai Wang, Zhaobin Song","doi":"10.1007/s11104-025-07387-6","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Backgrounds</h3><p>Global nitrogen (N) deposition is greatly impacting dryland ecosystems, especially biodiversity and above-ground biomass (AGB). AGB typically exhibits a saturation response to N addition, however, the N saturation thresholds and driving mechanisms remain poorly understood.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In both herbaceous and shrub communities of desert steppe, we conducted a five-year N addition experiment with eight levels to test AGB response. Also, we examined how three biodiversity facets (taxonomic, functional and phylogenetic diversity) and soil properties drive AGB.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>We found the N saturation thresholds for the response of AGB to N addition, with higher thresholds in herbaceous (N24 g m<sup>−2</sup> year<sup>−1</sup>) than shrub communities (N12 g m<sup>−2</sup> year<sup>−1</sup>). N addition promoted shifts in dominant species from conservative species to acquisitive species in herbaceous communities, supporting the two-order resource dynamics hypothesis, but this effect was minor in shrub communities. CWM trait values of SLA, LNC and height were key modulators of AGB under N addition, supporting the mass ratio hypothesis. In herbaceous communities, CWM <sub>SLA</sub> modulated the effects of N addition on AGB across eight N addition levels and before N saturation thresholds, and CWM <sub>LNC</sub> did after N saturation thresholds. In shrub communities, the effects of N addition on AGB were primarily modulated by variations in CWM <sub>height</sub>, particularly shrubs height.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This study provides new insights into the different N saturation thresholds for AGB in herbaceous and shrub communities, and highlights that CWM trait values modulates the effects of N addition on AGB. Our findings fill the knowledge gaps concerning how desert steppe AGB responds to a wider N addition gradient and driving mechanisms, providing the theoretical basis and guidance for policy formulation to enhance vegetation restoration.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"33 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-025-07387-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Backgrounds

Global nitrogen (N) deposition is greatly impacting dryland ecosystems, especially biodiversity and above-ground biomass (AGB). AGB typically exhibits a saturation response to N addition, however, the N saturation thresholds and driving mechanisms remain poorly understood.

Methods

In both herbaceous and shrub communities of desert steppe, we conducted a five-year N addition experiment with eight levels to test AGB response. Also, we examined how three biodiversity facets (taxonomic, functional and phylogenetic diversity) and soil properties drive AGB.

Results

We found the N saturation thresholds for the response of AGB to N addition, with higher thresholds in herbaceous (N24 g m−2 year−1) than shrub communities (N12 g m−2 year−1). N addition promoted shifts in dominant species from conservative species to acquisitive species in herbaceous communities, supporting the two-order resource dynamics hypothesis, but this effect was minor in shrub communities. CWM trait values of SLA, LNC and height were key modulators of AGB under N addition, supporting the mass ratio hypothesis. In herbaceous communities, CWM SLA modulated the effects of N addition on AGB across eight N addition levels and before N saturation thresholds, and CWM LNC did after N saturation thresholds. In shrub communities, the effects of N addition on AGB were primarily modulated by variations in CWM height, particularly shrubs height.

Conclusion

This study provides new insights into the different N saturation thresholds for AGB in herbaceous and shrub communities, and highlights that CWM trait values modulates the effects of N addition on AGB. Our findings fill the knowledge gaps concerning how desert steppe AGB responds to a wider N addition gradient and driving mechanisms, providing the theoretical basis and guidance for policy formulation to enhance vegetation restoration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信