{"title":"A wearable repetitive transcranial magnetic stimulation device","authors":"Zihui Qi, Hao Liu, Fang Jin, Yihang Wang, Xuefeng Lu, Ling Liu, Zhengyi Yang, Lingzhong Fan, Ming Song, Nianming Zuo, Tianzi Jiang","doi":"10.1038/s41467-025-58095-9","DOIUrl":null,"url":null,"abstract":"<p>Repetitive transcranial magnetic stimulation (rTMS) is widely used to treat various neuropsychiatric disorders and to explore the brain, but its considerable power consumption and large size limit its potential for broader utility, such as applications in free behaviors and in home and community settings. We addressed this challenge through lightweight magnetic core coil designs and high-power-density, high-voltage pulse driving techniques and successfully developed a battery-powered wearable rTMS device. The combined weight of the stimulator and coil is only 3 kg. The power consumption was reduced to 10% of commercial rTMS devices even though the stimulus intensity and repetition frequency are comparable. We demonstrated the effectiveness of this device during free walking, showing that neural activity associated with the legs can enhance the cortex excitability associated with the arms. This advancement allows for high-frequency rTMS modulation during free behaviors and enables convenient home and community rTMS treatments.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"183 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58095-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is widely used to treat various neuropsychiatric disorders and to explore the brain, but its considerable power consumption and large size limit its potential for broader utility, such as applications in free behaviors and in home and community settings. We addressed this challenge through lightweight magnetic core coil designs and high-power-density, high-voltage pulse driving techniques and successfully developed a battery-powered wearable rTMS device. The combined weight of the stimulator and coil is only 3 kg. The power consumption was reduced to 10% of commercial rTMS devices even though the stimulus intensity and repetition frequency are comparable. We demonstrated the effectiveness of this device during free walking, showing that neural activity associated with the legs can enhance the cortex excitability associated with the arms. This advancement allows for high-frequency rTMS modulation during free behaviors and enables convenient home and community rTMS treatments.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.