Matteo Palluzzi, Marita Afiandika, Shizhao Xiong, Akiko Tsurumaki, Paola D'Angelo, Aleksandar Matic, Maria Assunta Navarra
{"title":"A low-transition-temperature electrolyte based on ethylene glycol for rechargeable zinc-ion batteries","authors":"Matteo Palluzzi, Marita Afiandika, Shizhao Xiong, Akiko Tsurumaki, Paola D'Angelo, Aleksandar Matic, Maria Assunta Navarra","doi":"10.1016/j.electacta.2025.146061","DOIUrl":null,"url":null,"abstract":"Zinc-ion batteries (ZIBs) offer promising energy storage solutions due to their high capacity, abundance and low cost of raw materials, and stability in air of zinc. Despite these advantages, ZIBs with aqueous electrolytes struggle with issues like dendrite formation, hydrogen evolution, and zinc corrosion. This study explores the use of low-transition-temperature (LTT) mixtures as electrolytes to address these critical issues of ZIBs. Novel LTT electrolytes at different molar ratios of Zn(TFSI)₂ and ethylene glycol (EG), chosen for their cost-effectiveness, were prepared. The LTT electrolytes were characterized, through spectroscopic and electrochemical methods, and the most promising one (Zn:EG 1:7) was further evaluated in a full cell by coupling Zn metal with a K⁺-doped vanadium oxide (K₀.₅V₂O₅, KVO) cathode. The full cell shows an excellent stability upon cycling and notable suppression of the dendritic growth, but limited capacities. Our electrolyte system holds significant potential for advancing ZIB technology if further developed.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"91 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.146061","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc-ion batteries (ZIBs) offer promising energy storage solutions due to their high capacity, abundance and low cost of raw materials, and stability in air of zinc. Despite these advantages, ZIBs with aqueous electrolytes struggle with issues like dendrite formation, hydrogen evolution, and zinc corrosion. This study explores the use of low-transition-temperature (LTT) mixtures as electrolytes to address these critical issues of ZIBs. Novel LTT electrolytes at different molar ratios of Zn(TFSI)₂ and ethylene glycol (EG), chosen for their cost-effectiveness, were prepared. The LTT electrolytes were characterized, through spectroscopic and electrochemical methods, and the most promising one (Zn:EG 1:7) was further evaluated in a full cell by coupling Zn metal with a K⁺-doped vanadium oxide (K₀.₅V₂O₅, KVO) cathode. The full cell shows an excellent stability upon cycling and notable suppression of the dendritic growth, but limited capacities. Our electrolyte system holds significant potential for advancing ZIB technology if further developed.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.