A low-transition-temperature electrolyte based on ethylene glycol for rechargeable zinc-ion batteries

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Matteo Palluzzi, Marita Afiandika, Shizhao Xiong, Akiko Tsurumaki, Paola D'Angelo, Aleksandar Matic, Maria Assunta Navarra
{"title":"A low-transition-temperature electrolyte based on ethylene glycol for rechargeable zinc-ion batteries","authors":"Matteo Palluzzi, Marita Afiandika, Shizhao Xiong, Akiko Tsurumaki, Paola D'Angelo, Aleksandar Matic, Maria Assunta Navarra","doi":"10.1016/j.electacta.2025.146061","DOIUrl":null,"url":null,"abstract":"Zinc-ion batteries (ZIBs) offer promising energy storage solutions due to their high capacity, abundance and low cost of raw materials, and stability in air of zinc. Despite these advantages, ZIBs with aqueous electrolytes struggle with issues like dendrite formation, hydrogen evolution, and zinc corrosion. This study explores the use of low-transition-temperature (LTT) mixtures as electrolytes to address these critical issues of ZIBs. Novel LTT electrolytes at different molar ratios of Zn(TFSI)₂ and ethylene glycol (EG), chosen for their cost-effectiveness, were prepared. The LTT electrolytes were characterized, through spectroscopic and electrochemical methods, and the most promising one (Zn:EG 1:7) was further evaluated in a full cell by coupling Zn metal with a K⁺-doped vanadium oxide (K₀.₅V₂O₅, KVO) cathode. The full cell shows an excellent stability upon cycling and notable suppression of the dendritic growth, but limited capacities. Our electrolyte system holds significant potential for advancing ZIB technology if further developed.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"91 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.146061","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc-ion batteries (ZIBs) offer promising energy storage solutions due to their high capacity, abundance and low cost of raw materials, and stability in air of zinc. Despite these advantages, ZIBs with aqueous electrolytes struggle with issues like dendrite formation, hydrogen evolution, and zinc corrosion. This study explores the use of low-transition-temperature (LTT) mixtures as electrolytes to address these critical issues of ZIBs. Novel LTT electrolytes at different molar ratios of Zn(TFSI)₂ and ethylene glycol (EG), chosen for their cost-effectiveness, were prepared. The LTT electrolytes were characterized, through spectroscopic and electrochemical methods, and the most promising one (Zn:EG 1:7) was further evaluated in a full cell by coupling Zn metal with a K⁺-doped vanadium oxide (K₀.₅V₂O₅, KVO) cathode. The full cell shows an excellent stability upon cycling and notable suppression of the dendritic growth, but limited capacities. Our electrolyte system holds significant potential for advancing ZIB technology if further developed.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信