Sparse haplotype-based fine-scale local ancestry inference at scale reveals recent selection on immune responses

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yaoling Yang, Richard Durbin, Astrid K. N. Iversen, Daniel J. Lawson
{"title":"Sparse haplotype-based fine-scale local ancestry inference at scale reveals recent selection on immune responses","authors":"Yaoling Yang, Richard Durbin, Astrid K. N. Iversen, Daniel J. Lawson","doi":"10.1038/s41467-025-57601-3","DOIUrl":null,"url":null,"abstract":"<p>Increasingly efficient methods for inferring the ancestral origin of genome regions are needed to gain insights into genetic function and history as biobanks grow in scale. Here we describe two near-linear time algorithms to learn ancestry harnessing the strengths of a Positional Burrows-Wheeler Transform. SparsePainter is a faster, sparse replacement of previous model-based ‘chromosome painting’ algorithms to identify recently shared haplotypes, whilst PBWTpaint uses further approximations to obtain lightning-fast estimation optimized for genome-wide relatedness estimation. The computational efficiency gains of these tools for fine-scale local ancestry inference offer the possibility to analyse large-scale genomic datasets using different approaches. Application to the UK Biobank shows that haplotypes better represent ancestries than principal components, whilst linkage-disequilibrium of ancestry identifies signals of recent changes to population-specific selection for many genomic regions associated with immune responses, suggesting avenues for understanding the pathogen-immune system interplay on a historical timescale.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"26 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57601-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Increasingly efficient methods for inferring the ancestral origin of genome regions are needed to gain insights into genetic function and history as biobanks grow in scale. Here we describe two near-linear time algorithms to learn ancestry harnessing the strengths of a Positional Burrows-Wheeler Transform. SparsePainter is a faster, sparse replacement of previous model-based ‘chromosome painting’ algorithms to identify recently shared haplotypes, whilst PBWTpaint uses further approximations to obtain lightning-fast estimation optimized for genome-wide relatedness estimation. The computational efficiency gains of these tools for fine-scale local ancestry inference offer the possibility to analyse large-scale genomic datasets using different approaches. Application to the UK Biobank shows that haplotypes better represent ancestries than principal components, whilst linkage-disequilibrium of ancestry identifies signals of recent changes to population-specific selection for many genomic regions associated with immune responses, suggesting avenues for understanding the pathogen-immune system interplay on a historical timescale.

Abstract Image

基于稀疏单倍型的精细尺度局部祖先推断揭示了近期免疫反应的选择
随着生物库规模的扩大,需要越来越有效的方法来推断基因组区域的祖先起源,以深入了解遗传功能和历史。在这里,我们描述了两种利用位置Burrows-Wheeler变换的优势来学习祖先的近线性时间算法。SparsePainter是一种更快的、稀疏的替代先前基于模型的“染色体绘画”算法,用于识别最近共享的单倍型,而PBWTpaint使用进一步的近似来获得针对全基因组相关性估计优化的闪电估计。这些工具在精细尺度局部祖先推断方面的计算效率提高,为使用不同方法分析大规模基因组数据集提供了可能。对英国生物银行的应用表明,单倍型比主成分更能代表祖先,而祖先的连锁不平衡识别了与免疫反应相关的许多基因组区域的群体特异性选择的最新变化信号,为理解病原体-免疫系统在历史时间尺度上的相互作用提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信