Accurate Diagnosis of Alzheimer’s Disease Using Specific Breath Volatile Organic Compounds

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Sizhe Zhang, Haokun Liu, Ziyu Ouyang, Tianyan Xu, Qijie Yang, Yuan Zhu, Meidan Wan, Xuewen Xiao, Xuan Yang, Shuliang Chen, Li Yuan, Yuzhang Bei, Junling Wang, Jifeng Guo, Haibin Chen, Beisha Tang, Shilin Luo, Bin Jiao, Lu Shen
{"title":"Accurate Diagnosis of Alzheimer’s Disease Using Specific Breath Volatile Organic Compounds","authors":"Sizhe Zhang, Haokun Liu, Ziyu Ouyang, Tianyan Xu, Qijie Yang, Yuan Zhu, Meidan Wan, Xuewen Xiao, Xuan Yang, Shuliang Chen, Li Yuan, Yuzhang Bei, Junling Wang, Jifeng Guo, Haibin Chen, Beisha Tang, Shilin Luo, Bin Jiao, Lu Shen","doi":"10.1021/acssensors.4c03329","DOIUrl":null,"url":null,"abstract":"Whether volatile organic compounds (VOCs) from exhaled breath can be used as a novel biomarker for Alzheimer’s disease (AD) diagnosis is unclear. To determine the significantly distinctive VOCs for AD, a total of 970 participants were enrolled, including 60 individuals in data set 1 (AD, 30; controls, 30), 164 individuals in data set 2 (AD, 82; controls, 82), 637 individuals in data set 3 (AD, 31; controls, 606), and 109 individuals in data set 4 (frontotemporal dementia, 19; vascular dementia, 21; Parkinson’s disease, 69). The participants in data sets 1, 2, and 4 were from Xiangya Hospital, Central South University. Participants in data set 3 were from a two-year follow-up cohort. VOCs in breath and plasma, neuropsychological scores, plasma p-tau181 levels, metabolites in plasma, and brain functional connectivity were detected. We found that six VOCs were significantly different between the two groups in data set 1 and were verified in data set 2 and data set 3. Ethanol (<i>m</i>/<i>z</i> = 46) and pyrrole (<i>m</i>/<i>z</i> = 67) presented AUC values of 0.907 and 0.895 in data sets 1 and 2 (clinical data sets) and 0.849 and 0.974 in data set 3 (community data set), respectively. The six VOCs were associated with cognitive decline as reflected by neuropsychological tests; five of them were correlated with plasma p-tau181, and these five plasma VOCs were consistently altered as breath VOCs. Correlation between metabolites and five VOCs in plasma was noted, and the five VOCs may originate from blood metabolites. Moreover, four breath VOCs were associated with altered brain connectivity. In conclusion, specific breath VOCs may be used as biomarkers for AD detection.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"9 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03329","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Whether volatile organic compounds (VOCs) from exhaled breath can be used as a novel biomarker for Alzheimer’s disease (AD) diagnosis is unclear. To determine the significantly distinctive VOCs for AD, a total of 970 participants were enrolled, including 60 individuals in data set 1 (AD, 30; controls, 30), 164 individuals in data set 2 (AD, 82; controls, 82), 637 individuals in data set 3 (AD, 31; controls, 606), and 109 individuals in data set 4 (frontotemporal dementia, 19; vascular dementia, 21; Parkinson’s disease, 69). The participants in data sets 1, 2, and 4 were from Xiangya Hospital, Central South University. Participants in data set 3 were from a two-year follow-up cohort. VOCs in breath and plasma, neuropsychological scores, plasma p-tau181 levels, metabolites in plasma, and brain functional connectivity were detected. We found that six VOCs were significantly different between the two groups in data set 1 and were verified in data set 2 and data set 3. Ethanol (m/z = 46) and pyrrole (m/z = 67) presented AUC values of 0.907 and 0.895 in data sets 1 and 2 (clinical data sets) and 0.849 and 0.974 in data set 3 (community data set), respectively. The six VOCs were associated with cognitive decline as reflected by neuropsychological tests; five of them were correlated with plasma p-tau181, and these five plasma VOCs were consistently altered as breath VOCs. Correlation between metabolites and five VOCs in plasma was noted, and the five VOCs may originate from blood metabolites. Moreover, four breath VOCs were associated with altered brain connectivity. In conclusion, specific breath VOCs may be used as biomarkers for AD detection.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信