Jiaxin Ma, Shengnan Fan, Cong Shao, Lizhe Wang, Yuan Dong, Guosheng Niu, Zongxiu Nie, Shiyong Yang, Jizheng Wang, Haixia Yang
{"title":"Double-Chain Copolymer Network via In Situ Polymerization Enables High-Stability and Lead-Safe Perovskite Solar Cells","authors":"Jiaxin Ma, Shengnan Fan, Cong Shao, Lizhe Wang, Yuan Dong, Guosheng Niu, Zongxiu Nie, Shiyong Yang, Jizheng Wang, Haixia Yang","doi":"10.1002/anie.202425578","DOIUrl":null,"url":null,"abstract":"Lead halide perovskite solar cells (PSCs) have made significant progress due to their low cost and high efficiency. However, the long-term stability and lead toxicity of PSCs remain a huge challenge for further commercialization. Herein, we designed a multifunctional additive PAE with photosensitive properties to overcome these difficulties. A unique double-chain copolymer network can be constructed via in situ polymerization induced by ultraviolet (UV) light. The multiple active sites in the polymer chains can passivate various defects and enhance charge transfer. Meanwhile, the vast network provides an effective defense for perovskite to stabilize the internal structure and resist harsh external environments, thus delaying the degradation of devices and maximizing the suppression of toxic lead leakage. Remarkably, the devices protected by the network achieved a champion power conversion efficiency (PCE) of 26.20% (certified as 25.69%), the unencapsulated devices suppressed 80% of lead leakage and the encapsulated devices maintained 93% of the initial PCE after 1000 h in a humid and thermal environment (65 °C and 85% RH).","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"56 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202425578","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lead halide perovskite solar cells (PSCs) have made significant progress due to their low cost and high efficiency. However, the long-term stability and lead toxicity of PSCs remain a huge challenge for further commercialization. Herein, we designed a multifunctional additive PAE with photosensitive properties to overcome these difficulties. A unique double-chain copolymer network can be constructed via in situ polymerization induced by ultraviolet (UV) light. The multiple active sites in the polymer chains can passivate various defects and enhance charge transfer. Meanwhile, the vast network provides an effective defense for perovskite to stabilize the internal structure and resist harsh external environments, thus delaying the degradation of devices and maximizing the suppression of toxic lead leakage. Remarkably, the devices protected by the network achieved a champion power conversion efficiency (PCE) of 26.20% (certified as 25.69%), the unencapsulated devices suppressed 80% of lead leakage and the encapsulated devices maintained 93% of the initial PCE after 1000 h in a humid and thermal environment (65 °C and 85% RH).
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.