Xilin Lyu, Xiancheng Wang, Dongze Lin, Yuhan Lu, Chenxu Wang, Ziqin Yan, Zhiyi Wang, Ying Cheng, Jing Cheng, Xuelian Ren, Yi Su, Shijie Zhang, Yi Chen, He Huang, Yujun Zhao
{"title":"Synthesis of an RBM39 Degrader That Downregulates CEP192 and Induces Disorganized Spindle Structures","authors":"Xilin Lyu, Xiancheng Wang, Dongze Lin, Yuhan Lu, Chenxu Wang, Ziqin Yan, Zhiyi Wang, Ying Cheng, Jing Cheng, Xuelian Ren, Yi Su, Shijie Zhang, Yi Chen, He Huang, Yujun Zhao","doi":"10.1021/acs.jmedchem.5c00534","DOIUrl":null,"url":null,"abstract":"RBM39 is an essential component of the spliceosome, playing a critical role in maintaining mRNA integrity. Its depletion significantly exacerbates RNA splicing defects and demonstrates potent anticancer activity. To identify key effectors following RBM39 depletion, we employed a multiomics approach to directly compare two structurally distinct compounds, CB039 and Indisulam. Through proteomic analysis, RNA sequencing, and DepMap dependency assessment, CEP192 emerged as a crucial gene, exhibiting dependency in 96% of the 1,100 analyzed cancer cell lines. In eight cancer cell lines, treatment with both CB039 and Indisulam consistently induced CEP192 exon 42 skipping and reduced CEP192 protein levels. Mechanistically, either CB039 treatment or RNA interference-mediated CEP192 knockdown led to a significant increase in spindle disorganization, as well as chromosome condensation and failed segregation. In conclusion, our characterization of the downstream effects of RBM39 depletion provides novel insights into the therapeutic potential of RBM39 degraders.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"56 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.5c00534","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
RBM39 is an essential component of the spliceosome, playing a critical role in maintaining mRNA integrity. Its depletion significantly exacerbates RNA splicing defects and demonstrates potent anticancer activity. To identify key effectors following RBM39 depletion, we employed a multiomics approach to directly compare two structurally distinct compounds, CB039 and Indisulam. Through proteomic analysis, RNA sequencing, and DepMap dependency assessment, CEP192 emerged as a crucial gene, exhibiting dependency in 96% of the 1,100 analyzed cancer cell lines. In eight cancer cell lines, treatment with both CB039 and Indisulam consistently induced CEP192 exon 42 skipping and reduced CEP192 protein levels. Mechanistically, either CB039 treatment or RNA interference-mediated CEP192 knockdown led to a significant increase in spindle disorganization, as well as chromosome condensation and failed segregation. In conclusion, our characterization of the downstream effects of RBM39 depletion provides novel insights into the therapeutic potential of RBM39 degraders.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.