Magneto-Ionic Engineering of Antiferromagnetically RKKY-Coupled Multilayers

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zheng Ma, Aitor Arredondo-López, Jerzy Wrona, Javier Herrero-Martín, Juergen Langer, Ocker Berthold, Eva Pellicer, Enric Menéndez, Jordi Sort
{"title":"Magneto-Ionic Engineering of Antiferromagnetically RKKY-Coupled Multilayers","authors":"Zheng Ma, Aitor Arredondo-López, Jerzy Wrona, Javier Herrero-Martín, Juergen Langer, Ocker Berthold, Eva Pellicer, Enric Menéndez, Jordi Sort","doi":"10.1002/adma.202415393","DOIUrl":null,"url":null,"abstract":"Voltage-driven ion motion offers a powerful means to modulate magnetism and spin phenomena in solids, a process known as magneto-ionics, which holds great promise for developing energy-efficient next-generation micro- and nano-electronic devices. Synthetic antiferromagnets (SAFs), consisting of two ferromagnetic layers coupled antiferromagnetically via a thin non-magnetic spacer, offer advantages such as enhanced thermal stability, robustness against external magnetic fields, and reduced magnetostatic interactions in magnetic tunnel junctions. Despite its technological potential, magneto-ionic control of antiferromagnetic coupling in multilayers (MLs) has only recently been explored and remains poorly understood, particularly in systems free of platinum-group metals. In this work, room-temperature voltage control of Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions in Co/Ni-based SAFs is achieved. Transitions between ferrimagnetic (uncompensated) and antiferromagnetic (fully compensated) states is observed, as well as significant modulation of the RKKY bias field offset, emergence of additional switching events, and formation of skyrmion-like or pinned domain bubbles under relatively low gating voltages. These phenomena are attributed to voltage-driven oxygen migration in the MLs, as confirmed through microscopic and spectroscopic analyses. This study underscores the potential of voltage-triggered ion migration as a versatile tool for post-synthesis tuning of magnetic multilayers, with potential applications in magnetic-field sensing, energy-efficient memories and spintronics.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"40 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415393","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Voltage-driven ion motion offers a powerful means to modulate magnetism and spin phenomena in solids, a process known as magneto-ionics, which holds great promise for developing energy-efficient next-generation micro- and nano-electronic devices. Synthetic antiferromagnets (SAFs), consisting of two ferromagnetic layers coupled antiferromagnetically via a thin non-magnetic spacer, offer advantages such as enhanced thermal stability, robustness against external magnetic fields, and reduced magnetostatic interactions in magnetic tunnel junctions. Despite its technological potential, magneto-ionic control of antiferromagnetic coupling in multilayers (MLs) has only recently been explored and remains poorly understood, particularly in systems free of platinum-group metals. In this work, room-temperature voltage control of Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions in Co/Ni-based SAFs is achieved. Transitions between ferrimagnetic (uncompensated) and antiferromagnetic (fully compensated) states is observed, as well as significant modulation of the RKKY bias field offset, emergence of additional switching events, and formation of skyrmion-like or pinned domain bubbles under relatively low gating voltages. These phenomena are attributed to voltage-driven oxygen migration in the MLs, as confirmed through microscopic and spectroscopic analyses. This study underscores the potential of voltage-triggered ion migration as a versatile tool for post-synthesis tuning of magnetic multilayers, with potential applications in magnetic-field sensing, energy-efficient memories and spintronics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信