Deep-Penetrating and High-Resolution Continuous-Wave Nonlinear Microscopy Based on Homologous Dual-Emission Upconversion Adaptive Optics

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jing Yao, Zhipeng Yu, Yufeng Gao, Baoju Wang, Zhiyuan Wang, Tianting Zhong, Binxiong Pan, Huanhao Li, Hui Hui, Wei Zheng, Qiuqiang Zhan, Puxiang Lai
{"title":"Deep-Penetrating and High-Resolution Continuous-Wave Nonlinear Microscopy Based on Homologous Dual-Emission Upconversion Adaptive Optics","authors":"Jing Yao, Zhipeng Yu, Yufeng Gao, Baoju Wang, Zhiyuan Wang, Tianting Zhong, Binxiong Pan, Huanhao Li, Hui Hui, Wei Zheng, Qiuqiang Zhan, Puxiang Lai","doi":"10.1021/acs.nanolett.5c01030","DOIUrl":null,"url":null,"abstract":"Lanthanide-doped upconversion nanoparticles (UCNPs) are emerging as innovative nonlinear probes in biomedical studies, offering the unique capability to simultaneously emit both visible (VIS) and near-infrared (NIR) photons under continuous-wave (CW) NIR excitation. However, deep-tissue high-resolution imaging remains challenging due to the trade-off between VIS emission (higher resolution, limited penetration) and NIR emission (deeper penetration, lower resolution). Here we present a CW nonlinear microscopy based on homologous dual-emission upconversion adaptive optics, leveraging Tm<sup>3+</sup>/Yb<sup>3+</sup> co-doped UCNPs’ dual 455 nm/800 nm emission: the 800 nm emission for aberration measurement (guide-star) in deep tissues and the 455 nm emission for high-resolution imaging at matching depths. Using a home-built nonlinear laser scanning microscope with a 975 nm CW laser, we achieved near-diffraction-limited imaging (480 nm laterally) at a 500 μm depth in the mouse brain environment with significant optical aberrations. This strategy expands UCNPs’ applications and innovates the exploration of deep-tissue optical features.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"14 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01030","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lanthanide-doped upconversion nanoparticles (UCNPs) are emerging as innovative nonlinear probes in biomedical studies, offering the unique capability to simultaneously emit both visible (VIS) and near-infrared (NIR) photons under continuous-wave (CW) NIR excitation. However, deep-tissue high-resolution imaging remains challenging due to the trade-off between VIS emission (higher resolution, limited penetration) and NIR emission (deeper penetration, lower resolution). Here we present a CW nonlinear microscopy based on homologous dual-emission upconversion adaptive optics, leveraging Tm3+/Yb3+ co-doped UCNPs’ dual 455 nm/800 nm emission: the 800 nm emission for aberration measurement (guide-star) in deep tissues and the 455 nm emission for high-resolution imaging at matching depths. Using a home-built nonlinear laser scanning microscope with a 975 nm CW laser, we achieved near-diffraction-limited imaging (480 nm laterally) at a 500 μm depth in the mouse brain environment with significant optical aberrations. This strategy expands UCNPs’ applications and innovates the exploration of deep-tissue optical features.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信