Nature-Inspired Superwetting Membranes for Emulsified Oily Water Separation

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-03-20 DOI:10.1021/acsnano.5c01252
Shoujian Gao, Feng Zhang, Jian Jin
{"title":"Nature-Inspired Superwetting Membranes for Emulsified Oily Water Separation","authors":"Shoujian Gao, Feng Zhang, Jian Jin","doi":"10.1021/acsnano.5c01252","DOIUrl":null,"url":null,"abstract":"Nature-inspired superhydrophilic and underwater superoleophobic membranes have garnered significant attention due to their promising potential for separating emulsified oily water and addressing water security issues. The exceptional wettability imparts spontaneous water permeability and oil repellency to membranes, accelerating water filtration, enhancing oil isolation, and reducing membrane fouling during the process, thereby achieving fast and efficient oil–water separation. Over the past decade, a series of groundbreaking studies on nature-inspired superwetting membranes have propelled oily water separation technology into a transformative phase of development. In the subsequent phase, people still face the challenge of evolving superwetting membranes with the dual capabilities of purifying water and recovering oil from particularly surfactant-stabilized emulsions to achieve sustainable resource utilization and zero liquid discharge. In this Perspective, we briefly review recent advances in superwetting membranes, emphasizing their advantages, bionic principles, design concepts, fabrication methods, and separation performance for various types of emulsified oily water. Additionally, we present membrane-based strategies for simultaneous water purification and oil recovery from emulsified oily water. Finally, we identify current bottlenecks and propose future direction in this area, focusing on the development of next-generation superwetting membranes for comprehensive separation and zero discharge of true oily water at an industrial scale.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"11 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c01252","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nature-inspired superhydrophilic and underwater superoleophobic membranes have garnered significant attention due to their promising potential for separating emulsified oily water and addressing water security issues. The exceptional wettability imparts spontaneous water permeability and oil repellency to membranes, accelerating water filtration, enhancing oil isolation, and reducing membrane fouling during the process, thereby achieving fast and efficient oil–water separation. Over the past decade, a series of groundbreaking studies on nature-inspired superwetting membranes have propelled oily water separation technology into a transformative phase of development. In the subsequent phase, people still face the challenge of evolving superwetting membranes with the dual capabilities of purifying water and recovering oil from particularly surfactant-stabilized emulsions to achieve sustainable resource utilization and zero liquid discharge. In this Perspective, we briefly review recent advances in superwetting membranes, emphasizing their advantages, bionic principles, design concepts, fabrication methods, and separation performance for various types of emulsified oily water. Additionally, we present membrane-based strategies for simultaneous water purification and oil recovery from emulsified oily water. Finally, we identify current bottlenecks and propose future direction in this area, focusing on the development of next-generation superwetting membranes for comprehensive separation and zero discharge of true oily water at an industrial scale.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信