Sulfur's Long Game: 145 Years of Soil Sulfur Speciation in the World's Oldest Agricultural Experiments

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Meghan Barnard, Brigid A. McKenna, Ram C. Dalal, Steve P. McGrath, Zhe H. Weng, Jeremy L. Wykes, Peter M. Kopittke
{"title":"Sulfur's Long Game: 145 Years of Soil Sulfur Speciation in the World's Oldest Agricultural Experiments","authors":"Meghan Barnard, Brigid A. McKenna, Ram C. Dalal, Steve P. McGrath, Zhe H. Weng, Jeremy L. Wykes, Peter M. Kopittke","doi":"10.1111/gcb.70136","DOIUrl":null,"url":null,"abstract":"Sulfur (S) is an essential plant nutrient, but ongoing decreases in inorganic S inputs to soil continue to reduce S availability in agricultural soils globally. This study investigated long-term trends in soil S speciation after land use change and the application of different soil amendments using the world's longest-running agricultural experiments at the Rothamsted Research Centre, UK. Soil samples spanning 145 years were obtained from the Broadbalk Wheat Experiment (continuous cropping with different amendments) and two Wilderness sites, Broadbalk Wilderness and Geescroft Wilderness (cropping land left to rewild) and analysed using synchrotron-based x-ray absorption near-edge structure (XANES) spectroscopy. It was found that changes in S speciation were linked to changes in soil organic carbon (SOC). In the Broadbalk Winter Wheat experiment, farmyard manure applications increased the proportion of reduced C-bonded S by 40% over 145 years, while the S speciation in the inorganic fertiliser (NPKMgS) and Control treatments remained unchanged and was comprised of ~48% oxidised S. In the Wilderness sites (cropping ceased 143–146 years from present), SOC accumulation during rewilding generally increased the proportions of reduced organic S. However, soil acidification at the Geescroft site initially increased the average oxidation state of S (from +3.7 in 1883 to +4.4 in 1965) despite increasing SOC. Thus, whilst SOC is important in controlling S speciation, soil pH also has a central effect. These findings provide new insights into the long-term dynamics of S speciation under different agricultural practices and land-use changes and contribute to our understanding of S and its availability in cropping systems.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"19 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/gcb.70136","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfur (S) is an essential plant nutrient, but ongoing decreases in inorganic S inputs to soil continue to reduce S availability in agricultural soils globally. This study investigated long-term trends in soil S speciation after land use change and the application of different soil amendments using the world's longest-running agricultural experiments at the Rothamsted Research Centre, UK. Soil samples spanning 145 years were obtained from the Broadbalk Wheat Experiment (continuous cropping with different amendments) and two Wilderness sites, Broadbalk Wilderness and Geescroft Wilderness (cropping land left to rewild) and analysed using synchrotron-based x-ray absorption near-edge structure (XANES) spectroscopy. It was found that changes in S speciation were linked to changes in soil organic carbon (SOC). In the Broadbalk Winter Wheat experiment, farmyard manure applications increased the proportion of reduced C-bonded S by 40% over 145 years, while the S speciation in the inorganic fertiliser (NPKMgS) and Control treatments remained unchanged and was comprised of ~48% oxidised S. In the Wilderness sites (cropping ceased 143–146 years from present), SOC accumulation during rewilding generally increased the proportions of reduced organic S. However, soil acidification at the Geescroft site initially increased the average oxidation state of S (from +3.7 in 1883 to +4.4 in 1965) despite increasing SOC. Thus, whilst SOC is important in controlling S speciation, soil pH also has a central effect. These findings provide new insights into the long-term dynamics of S speciation under different agricultural practices and land-use changes and contribute to our understanding of S and its availability in cropping systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信