{"title":"Heterogeneous integration of 2D memristor arrays and silicon selectors for compute-in-memory hardware in convolutional neural networks","authors":"Samarth Jain, Sifan Li, Haofei Zheng, Lingqi Li, Xuanyao Fong, Kah-Wee Ang","doi":"10.1038/s41467-025-58039-3","DOIUrl":null,"url":null,"abstract":"<p>Memristor crossbar arrays (CBAs) based on two-dimensional (2D) materials have emerged as a potential solution to overcome the limitations of energy consumption and latency associated with conventional von Neumann architectures. However, current 2D memristor CBAs encounter specific challenges such as limited array size, high sneak path current, and lack of integration with peripheral circuits for hardware compute-in-memory (CIM) systems. In this work, we demonstrate a hardware CIM system leveraging heterogeneous integration of scalable 2D hafnium diselenide (HfSe<sub>2</sub>) memristors and silicon (Si) selectors, as well as their integration with peripheral control-sensing circuits. The 32 × 32 one-selector-one-memristor (1S1R) array mitigates sneak current, achieving 89% yield. The integrated CBA demonstrates an improvement of energy efficiency and response time comparable to state-of-the-art 2D materials-based memristors. To take advantage of low latency devices for achieving low energy systems, we use time-domain sensing circuits with the CBA, whose power consumption surpasses that of analog-to-digital converters (ADCs) by 2.5 folds. The implemented full-hardware binary convolutional neural network (CNN) achieves remarkable accuracy (97.5%) in a pattern recognition task. Additionally, in-built activation functions enhance the energy efficiency of the system. This silicon-compatible heterogeneous integration approach presents a promising hardware solution for artificial intelligence (AI) applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"59 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58039-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Memristor crossbar arrays (CBAs) based on two-dimensional (2D) materials have emerged as a potential solution to overcome the limitations of energy consumption and latency associated with conventional von Neumann architectures. However, current 2D memristor CBAs encounter specific challenges such as limited array size, high sneak path current, and lack of integration with peripheral circuits for hardware compute-in-memory (CIM) systems. In this work, we demonstrate a hardware CIM system leveraging heterogeneous integration of scalable 2D hafnium diselenide (HfSe2) memristors and silicon (Si) selectors, as well as their integration with peripheral control-sensing circuits. The 32 × 32 one-selector-one-memristor (1S1R) array mitigates sneak current, achieving 89% yield. The integrated CBA demonstrates an improvement of energy efficiency and response time comparable to state-of-the-art 2D materials-based memristors. To take advantage of low latency devices for achieving low energy systems, we use time-domain sensing circuits with the CBA, whose power consumption surpasses that of analog-to-digital converters (ADCs) by 2.5 folds. The implemented full-hardware binary convolutional neural network (CNN) achieves remarkable accuracy (97.5%) in a pattern recognition task. Additionally, in-built activation functions enhance the energy efficiency of the system. This silicon-compatible heterogeneous integration approach presents a promising hardware solution for artificial intelligence (AI) applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.