High-resolution tunnelling spectroscopy of fractional quantum Hall states

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yuwen Hu, Yen-Chen Tsui, Minhao He, Umut Kamber, Taige Wang, Amir S. Mohammadi, Kenji Watanabe, Takashi Taniguchi, Zlatko Papić, Michael P. Zaletel, Ali Yazdani
{"title":"High-resolution tunnelling spectroscopy of fractional quantum Hall states","authors":"Yuwen Hu, Yen-Chen Tsui, Minhao He, Umut Kamber, Taige Wang, Amir S. Mohammadi, Kenji Watanabe, Takashi Taniguchi, Zlatko Papić, Michael P. Zaletel, Ali Yazdani","doi":"10.1038/s41567-025-02830-y","DOIUrl":null,"url":null,"abstract":"<p>Strong interactions between electrons in two-dimensional systems in the presence of a high magnetic field give rise to fractional quantum Hall states that host quasiparticles with a fractional charge and fractional exchange statistics. Here we demonstrate high-resolution scanning tunnelling microscopy and spectroscopy of fractional quantum Hall states in ultra-clean Bernal-stacked bilayer graphene devices. Spectroscopy measurements show sharp excitations that have been predicted to emerge when electrons fractionalize into bound states of quasiparticles. We found energy gaps for candidate non-abelian fractional states that are larger by a factor of five than those in other related systems, for example, semiconductor heterostructures, and this suggests that bilayer graphene is an ideal platform for manipulating these quasiparticles and for creating topological quantum bits. We also found previously unobserved fractional states in our very clean graphene samples.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"11 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02830-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Strong interactions between electrons in two-dimensional systems in the presence of a high magnetic field give rise to fractional quantum Hall states that host quasiparticles with a fractional charge and fractional exchange statistics. Here we demonstrate high-resolution scanning tunnelling microscopy and spectroscopy of fractional quantum Hall states in ultra-clean Bernal-stacked bilayer graphene devices. Spectroscopy measurements show sharp excitations that have been predicted to emerge when electrons fractionalize into bound states of quasiparticles. We found energy gaps for candidate non-abelian fractional states that are larger by a factor of five than those in other related systems, for example, semiconductor heterostructures, and this suggests that bilayer graphene is an ideal platform for manipulating these quasiparticles and for creating topological quantum bits. We also found previously unobserved fractional states in our very clean graphene samples.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信