Single-atom molybdenum modified ZnIn2S4 nanoflowers for improving photocatalytic hydrogen evolution performance

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Zetian He, Daimei Chen, Shiqing Ma, Lingling Guo, Fengshan Zhou, Yilei Li
{"title":"Single-atom molybdenum modified ZnIn2S4 nanoflowers for improving photocatalytic hydrogen evolution performance","authors":"Zetian He, Daimei Chen, Shiqing Ma, Lingling Guo, Fengshan Zhou, Yilei Li","doi":"10.1016/j.apsusc.2025.163023","DOIUrl":null,"url":null,"abstract":"The construction of efficient photocatalysts with abundant active sites can effectively address the energy challenge of hydrogen production through water photolysis. In this study, we report an efficient photocatalytic catalyst, consisting of single-atom Mo-modified ZnIn<sub>2</sub>S<sub>4</sub> nanoflowers, and propose a mechanism for photocatalytic hydrogen production. Using LA as sacrificial agent under the irradiation of Xe lamp (300W), the photocatalytic hydrogen production rate of the catalyst achieved 138.8 μmol‧h<sup>-1</sup> (per 20 mg of catalyst), which is 3.5 times higher than that of bulk ZnIn<sub>2</sub>S<sub>4</sub>. And the quantum efficiency of the catalyst reached 23.59 % at the wavelength of 350 nm, demonstrating good stability. The XANES, XPS, FTIR tests confirm that Mo is monoatomically dispersed in the form of Mo-O bonds. The uniformly dispersed single-atom Mo provides abundant active sites, while the formed Mo-O bonds facilitate electron transport and inhibit the recombination of electron-hole pairs, thereby enhancing the photocatalytic hydrogen production activity of ZnIn<sub>2</sub>S<sub>4</sub>. This work offers a novel approach for the development of single-atom catalytic materials.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"24 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.163023","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The construction of efficient photocatalysts with abundant active sites can effectively address the energy challenge of hydrogen production through water photolysis. In this study, we report an efficient photocatalytic catalyst, consisting of single-atom Mo-modified ZnIn2S4 nanoflowers, and propose a mechanism for photocatalytic hydrogen production. Using LA as sacrificial agent under the irradiation of Xe lamp (300W), the photocatalytic hydrogen production rate of the catalyst achieved 138.8 μmol‧h-1 (per 20 mg of catalyst), which is 3.5 times higher than that of bulk ZnIn2S4. And the quantum efficiency of the catalyst reached 23.59 % at the wavelength of 350 nm, demonstrating good stability. The XANES, XPS, FTIR tests confirm that Mo is monoatomically dispersed in the form of Mo-O bonds. The uniformly dispersed single-atom Mo provides abundant active sites, while the formed Mo-O bonds facilitate electron transport and inhibit the recombination of electron-hole pairs, thereby enhancing the photocatalytic hydrogen production activity of ZnIn2S4. This work offers a novel approach for the development of single-atom catalytic materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信