Promoted synergistic interactions between Ce and Ni in hierarchical porous Ce-UiO-66 supported Ni NPs for dicyclopentadiene hydrogenation to tetrahydrodicyclopentadiene
Fajie Hu, Rushuo Li, Danfeng Zhao, Xiubing Huang, Ge Wang
{"title":"Promoted synergistic interactions between Ce and Ni in hierarchical porous Ce-UiO-66 supported Ni NPs for dicyclopentadiene hydrogenation to tetrahydrodicyclopentadiene","authors":"Fajie Hu, Rushuo Li, Danfeng Zhao, Xiubing Huang, Ge Wang","doi":"10.1016/j.apsusc.2025.163022","DOIUrl":null,"url":null,"abstract":"The hydrogenation of dicyclopentadiene (DCPD) to synthesize tetrahydrodicyclopentadiene (THDCPD) is one of the key processes for the preparation of high-energy–density fuels, and the development of low-temperature and high-activity Ni catalysts is still challenging. In this work, hierarchical porous (HP) Ce-UiO-66 loaded Ni nanoparticles (NPs) catalysts were prepared based on the soft template method and liquid-phase in situ reduction method. The introduction of mesopores into Ce-UiO-66 can effectively enhance the transfer and adsorption of the substrate, and Ni NPs act as the main active centers. Furthermore, the modulation of the electronic structure of Ni NPs and the promotion of Ce-Ni interaction were effectively achieved by changing the in-situ deposition conditions. With a low loading of 3 wt% Ni NPs, the prepared 3Ni/HP-UiO-66 catalysts could achieve the observed complete DCPD conversion and 100 % selectivity of THDCPD within 1 h and retained good cycling stability. The results demonstrated preferential adsorption and hydrogenation of the norbornene ring, confirming the reaction pathway of the 3Ni/HP-UiO-66 catalyst for the hydrogenation of DCPD. The present work provides a guidance for exploring and designing non-noble metal catalysts for the hydrogenation of olefins and aromatics.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"91 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.163022","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrogenation of dicyclopentadiene (DCPD) to synthesize tetrahydrodicyclopentadiene (THDCPD) is one of the key processes for the preparation of high-energy–density fuels, and the development of low-temperature and high-activity Ni catalysts is still challenging. In this work, hierarchical porous (HP) Ce-UiO-66 loaded Ni nanoparticles (NPs) catalysts were prepared based on the soft template method and liquid-phase in situ reduction method. The introduction of mesopores into Ce-UiO-66 can effectively enhance the transfer and adsorption of the substrate, and Ni NPs act as the main active centers. Furthermore, the modulation of the electronic structure of Ni NPs and the promotion of Ce-Ni interaction were effectively achieved by changing the in-situ deposition conditions. With a low loading of 3 wt% Ni NPs, the prepared 3Ni/HP-UiO-66 catalysts could achieve the observed complete DCPD conversion and 100 % selectivity of THDCPD within 1 h and retained good cycling stability. The results demonstrated preferential adsorption and hydrogenation of the norbornene ring, confirming the reaction pathway of the 3Ni/HP-UiO-66 catalyst for the hydrogenation of DCPD. The present work provides a guidance for exploring and designing non-noble metal catalysts for the hydrogenation of olefins and aromatics.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.