{"title":"Exploring the plant microbiome: A pathway to climate-smart crops","authors":"An-Hui Ge, Ertao Wang","doi":"10.1016/j.cell.2025.01.035","DOIUrl":null,"url":null,"abstract":"The advent of semi-dwarf crop varieties and fertilizers during the Green Revolution boosted yields and food security. However, unintended consequences such as environmental pollution and greenhouse gas emissions underscore the need for strategies to mitigate these impacts. Manipulating rhizosphere microbiomes, an aspect overlooked during crop domestication, offers a pathway for sustainable agriculture. We propose that modulating plant microbiomes can help establish “climate-smart crops” that improve yield and reduce negative impacts on the environment. Our proposed framework integrates plant genotype, root exudates, and microbes to optimize nutrient cycling, improve stress resilience, and expedite carbon sequestration. Integrating unselected ecological traits into crop breeding can promote agricultural sustainability, illuminating the nexus between plant genetics and ecosystem functioning.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"26 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.01.035","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of semi-dwarf crop varieties and fertilizers during the Green Revolution boosted yields and food security. However, unintended consequences such as environmental pollution and greenhouse gas emissions underscore the need for strategies to mitigate these impacts. Manipulating rhizosphere microbiomes, an aspect overlooked during crop domestication, offers a pathway for sustainable agriculture. We propose that modulating plant microbiomes can help establish “climate-smart crops” that improve yield and reduce negative impacts on the environment. Our proposed framework integrates plant genotype, root exudates, and microbes to optimize nutrient cycling, improve stress resilience, and expedite carbon sequestration. Integrating unselected ecological traits into crop breeding can promote agricultural sustainability, illuminating the nexus between plant genetics and ecosystem functioning.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.