Dissecting the molecular basis of variability for flowering time in Camelina sativa

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Liyong Zhang, Venkatesh Bollina, Peng Gao, Isobel A. P. Parkin
{"title":"Dissecting the molecular basis of variability for flowering time in Camelina sativa","authors":"Liyong Zhang, Venkatesh Bollina, Peng Gao, Isobel A. P. Parkin","doi":"10.1111/pbi.70049","DOIUrl":null,"url":null,"abstract":"<i>Camelina sativa</i> is an important polyploid oilseed crop with multiple favourable agronomic traits. Capturing the leaf transcriptome of 48 accessions of <i>C. sativa</i> suggests allelic variation for gene expression levels and notably sub-genome dominance, both of which could provide opportunities for crop improvement. Flowering time (FT) is a crucial factor affecting the overall yield of crops. However, our understanding of the molecular mechanisms underlying FT regulation in <i>C. sativa</i> are still limited, partly due to its complex allohexaploid genome. In this study, weighted gene co-expression network analysis (WGCNA), expression quantitative trait loci (eQTL) analysis and transcriptome-wide association study (TWAS) were employed to explore the FT diversity among 48 <i>C. sativa</i> accessions and dissect the underlying molecular basis. Our results revealed a FT-related co-expressed gene module highly enriched with <i>SOC1</i> and <i>SOC1</i>-like genes and identified 10 significant FT-associated single nucleotide polymorphisms (SNPs) defining three haplotype groups; thus providing a molecular basis for future genetic improvements in <i>C. sativa</i> breeding.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"14 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70049","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Camelina sativa is an important polyploid oilseed crop with multiple favourable agronomic traits. Capturing the leaf transcriptome of 48 accessions of C. sativa suggests allelic variation for gene expression levels and notably sub-genome dominance, both of which could provide opportunities for crop improvement. Flowering time (FT) is a crucial factor affecting the overall yield of crops. However, our understanding of the molecular mechanisms underlying FT regulation in C. sativa are still limited, partly due to its complex allohexaploid genome. In this study, weighted gene co-expression network analysis (WGCNA), expression quantitative trait loci (eQTL) analysis and transcriptome-wide association study (TWAS) were employed to explore the FT diversity among 48 C. sativa accessions and dissect the underlying molecular basis. Our results revealed a FT-related co-expressed gene module highly enriched with SOC1 and SOC1-like genes and identified 10 significant FT-associated single nucleotide polymorphisms (SNPs) defining three haplotype groups; thus providing a molecular basis for future genetic improvements in C. sativa breeding.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信