Fractional inhibitory concentration of bio-actives from agricultural waste disassembles biofilms and quenches virulence of nosocomial pathogens.

Srividhya Krishnan, Ponnusami Venkatachalam, Saravanan Ramiah Shanmugam, Nithyanand Paramasivam
{"title":"Fractional inhibitory concentration of bio-actives from agricultural waste disassembles biofilms and quenches virulence of nosocomial pathogens.","authors":"Srividhya Krishnan, Ponnusami Venkatachalam, Saravanan Ramiah Shanmugam, Nithyanand Paramasivam","doi":"10.1099/jmm.0.001980","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction.</b> The contact surfaces in hospitals serve as reservoirs for pathogens and account for 20-40% of hospital-acquired infections. This resistance is mainly attributed to the biofilm-forming ability of the microbes. These biofilms restrict the entry of the antibiotics to penetrate them, thus giving rise to drug resistance. Hence, there is a renewed interest in formulating an environmentally friendly, non-allergic, quick mode of action, broad-spectrum disinfectant.<b>Hypothesis.</b> We hypothesize that the pure compounds present in the pyrolysis aqueous phase could act as an anti-infective and anti-biofilm agent.<b>Aim.</b> The present work investigates the effectiveness of furfuryl alcohol, 2-methyl-2-cyclopentenone and guaiacol as effective anti-infective agent followed by testing its biofilm eradication potential against the mixed species of multidrug-resistant pathogens such as <i>Acinetobacter baumannii</i>, methicillin-resistant <i>Staphylococcus aureus</i> and <i>Candida auris</i>.<b>Methodology.</b> The MIC and fractional inhibitory concentrations (FIC) of the pure compounds were determined using checkerboard assay for two-compound and three-compound combinations. The biofilm eradication concentration was performed on stainless coupons, followed by RNA isolation and quantitative PCR (qPCR) analysis to elucidate virulence gene downregulation.<b>Results.</b> The individual MICs of furfuryl alcohol, 2-methyl-2-cyclopentenone and guaiacol were found to be 8%, 9% and 2% (v/v), respectively. The two-compound combination FIC index of 0.75 showed partial synergy between the compounds, while the three-compound combination showed an additive effect with a FIC index of 0.87. Further, at ½ FIC (biofilm inhibitory concentration), the compounds showed 52% eradication of preformed biofilms on the hospital contact surfaces (stainless steel). The growth and time-to-kill curve showed that the compounds were not lethal to planktonic cells at BIC. Finally, the qPCR analysis showed a reduction in the expression levels of biofilm and adhesion genes, while the Quorum sensing (QS) genes were affected much more, elucidating a possible eradication mechanism.<b>Conclusion.</b> From this study, we have found a new class of compounds that have potential disinfecting ability. With the current knowledge, the future lead would be to effectively use them in disinfectant formulations.</p>","PeriodicalId":94093,"journal":{"name":"Journal of medical microbiology","volume":"74 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1099/jmm.0.001980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction. The contact surfaces in hospitals serve as reservoirs for pathogens and account for 20-40% of hospital-acquired infections. This resistance is mainly attributed to the biofilm-forming ability of the microbes. These biofilms restrict the entry of the antibiotics to penetrate them, thus giving rise to drug resistance. Hence, there is a renewed interest in formulating an environmentally friendly, non-allergic, quick mode of action, broad-spectrum disinfectant.Hypothesis. We hypothesize that the pure compounds present in the pyrolysis aqueous phase could act as an anti-infective and anti-biofilm agent.Aim. The present work investigates the effectiveness of furfuryl alcohol, 2-methyl-2-cyclopentenone and guaiacol as effective anti-infective agent followed by testing its biofilm eradication potential against the mixed species of multidrug-resistant pathogens such as Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus and Candida auris.Methodology. The MIC and fractional inhibitory concentrations (FIC) of the pure compounds were determined using checkerboard assay for two-compound and three-compound combinations. The biofilm eradication concentration was performed on stainless coupons, followed by RNA isolation and quantitative PCR (qPCR) analysis to elucidate virulence gene downregulation.Results. The individual MICs of furfuryl alcohol, 2-methyl-2-cyclopentenone and guaiacol were found to be 8%, 9% and 2% (v/v), respectively. The two-compound combination FIC index of 0.75 showed partial synergy between the compounds, while the three-compound combination showed an additive effect with a FIC index of 0.87. Further, at ½ FIC (biofilm inhibitory concentration), the compounds showed 52% eradication of preformed biofilms on the hospital contact surfaces (stainless steel). The growth and time-to-kill curve showed that the compounds were not lethal to planktonic cells at BIC. Finally, the qPCR analysis showed a reduction in the expression levels of biofilm and adhesion genes, while the Quorum sensing (QS) genes were affected much more, elucidating a possible eradication mechanism.Conclusion. From this study, we have found a new class of compounds that have potential disinfecting ability. With the current knowledge, the future lead would be to effectively use them in disinfectant formulations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信