Siyuan Luo, Chenyu Zhao, Rong Wang and Daocheng Wu
{"title":"Sequential drug release nanocomposites for synergistic therapy in disease treatment","authors":"Siyuan Luo, Chenyu Zhao, Rong Wang and Daocheng Wu","doi":"10.1039/D5TB00026B","DOIUrl":null,"url":null,"abstract":"<p >Time-sequenced drug release, or sequential drug release, represents a pivotal strategy in the synergistic treatment of diseases using nanocomposites. Achieving this requires the rational integration of multiple therapeutic agents within a single nanocomposite, coupled with precise time-controlled release mechanisms. These nanocomposites offer many advantages, including enhanced therapeutic synergy, reduced side effects, attenuated adverse interactions, improved stability and optimized drug utilization. Consequently, research in the field of drug delivery and synergistic therapy has become increasingly important. Currently, sequential drug release research is still in the data collection and basic research stages, and its potential has not yet been fully explored. Although prior studies have explored the sequential drug release strategy in various contexts, a comprehensive review of the underlying mechanisms and their applications in nanocomposites remains scarce. This review categorizes different types of sequential drug release strategies and summarizes diverse nanocomposites, focusing on both physical approaches driven by structural variations and chemical methods based on stimulus-responsive mechanisms. Furthermore, we highlight the major applications of sequential drug release strategies in the treatment of various diseases and detail their therapeutic efficacy. Finally, emerging trends and challenges in advancing sequential drug release strategies based on nanocomposites for disease treatment are also discussed.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 14","pages":" 4313-4329"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00026b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Time-sequenced drug release, or sequential drug release, represents a pivotal strategy in the synergistic treatment of diseases using nanocomposites. Achieving this requires the rational integration of multiple therapeutic agents within a single nanocomposite, coupled with precise time-controlled release mechanisms. These nanocomposites offer many advantages, including enhanced therapeutic synergy, reduced side effects, attenuated adverse interactions, improved stability and optimized drug utilization. Consequently, research in the field of drug delivery and synergistic therapy has become increasingly important. Currently, sequential drug release research is still in the data collection and basic research stages, and its potential has not yet been fully explored. Although prior studies have explored the sequential drug release strategy in various contexts, a comprehensive review of the underlying mechanisms and their applications in nanocomposites remains scarce. This review categorizes different types of sequential drug release strategies and summarizes diverse nanocomposites, focusing on both physical approaches driven by structural variations and chemical methods based on stimulus-responsive mechanisms. Furthermore, we highlight the major applications of sequential drug release strategies in the treatment of various diseases and detail their therapeutic efficacy. Finally, emerging trends and challenges in advancing sequential drug release strategies based on nanocomposites for disease treatment are also discussed.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices