Classification of skeletal discrepancies by machine learning based on three-dimensional facial scans.

B Mao, Y Tian, Y Xiao, J Li, Y Zhou, X Wang
{"title":"Classification of skeletal discrepancies by machine learning based on three-dimensional facial scans.","authors":"B Mao, Y Tian, Y Xiao, J Li, Y Zhou, X Wang","doi":"10.1016/j.ijom.2025.03.003","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to use machine learning (ML) to classify sagittal and vertical skeletal discrepancies in three-dimensional (3D) facial scans, as well as to evaluate shape variability. 3D facial scans from 435 pre-orthodontic patients were subjected to cephalometric analysis and 3D facial landmark identification. Three ML models were used for the discrimination of skeletal discrepancy: random forest, AdaBoost, and multi-layer perceptron. Each model was evaluated by receiver operating characteristic curve and calculating the area under the curve (AUC). Principal component analysis was conducted to evaluate shape variability. The AUCs for Class II and III patients ranged from 0.91 to 0.95. Random forest achieved the highest accuracy for sagittal classification (88.5% for Class II, 95.5% for Class III). Multi-layer perceptron exhibited the best performance for vertical classification (accuracy of 78.8% for hypodivergent, 86.2% for hyperdivergent). Six principal components explained 94.0% of facial morphology variation. ML methods show promise for assisting in the discrimination of sagittal and vertical skeletal discrepancies based on 3D facial scans. 3D facial soft tissue features appear to be suitable for the discrimination of skeletal discrepancies in most cases.</p>","PeriodicalId":94053,"journal":{"name":"International journal of oral and maxillofacial surgery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of oral and maxillofacial surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ijom.2025.03.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to use machine learning (ML) to classify sagittal and vertical skeletal discrepancies in three-dimensional (3D) facial scans, as well as to evaluate shape variability. 3D facial scans from 435 pre-orthodontic patients were subjected to cephalometric analysis and 3D facial landmark identification. Three ML models were used for the discrimination of skeletal discrepancy: random forest, AdaBoost, and multi-layer perceptron. Each model was evaluated by receiver operating characteristic curve and calculating the area under the curve (AUC). Principal component analysis was conducted to evaluate shape variability. The AUCs for Class II and III patients ranged from 0.91 to 0.95. Random forest achieved the highest accuracy for sagittal classification (88.5% for Class II, 95.5% for Class III). Multi-layer perceptron exhibited the best performance for vertical classification (accuracy of 78.8% for hypodivergent, 86.2% for hyperdivergent). Six principal components explained 94.0% of facial morphology variation. ML methods show promise for assisting in the discrimination of sagittal and vertical skeletal discrepancies based on 3D facial scans. 3D facial soft tissue features appear to be suitable for the discrimination of skeletal discrepancies in most cases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信