The impact of rhizosphere soil microorganisms on the medicinal active ingredients of Atractylodes chinensis from different regions.

Plant signaling & behavior Pub Date : 2025-12-01 Epub Date: 2025-03-19 DOI:10.1080/15592324.2025.2473517
Jia Bai, Yang Lu, Ping Dong, Yu Cao, Jian-Wei Liu, Chun-Ying Zhao
{"title":"The impact of rhizosphere soil microorganisms on the medicinal active ingredients of <i>Atractylodes chinensis</i> from different regions.","authors":"Jia Bai, Yang Lu, Ping Dong, Yu Cao, Jian-Wei Liu, Chun-Ying Zhao","doi":"10.1080/15592324.2025.2473517","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Analyzing the rhizosphere microbial community structure of <i>Atractylodes chinensis</i> from different regions and its correlation with the accumulation of main medicinal active ingredients, this study aims to explore the impact of rhizosphere soil microorganisms on the effective components of <i>A. chinensis</i>, providing a scientific basis for the high-quality and high-yield cultivation of <i>A. chinensis</i>.</p><p><strong>Methods and results: </strong>The rhizosphere soil of three-year-old <i>A. chinensis</i> was used as the research object. High-throughput sequencing technology was employed to analyze the rhizosphere bacterial and fungal community structures. High Performance Liquid Chromatography (HPLC) was used to detect the contents of atractylodin, atractylon, β-eudesmol, and atractylenolide III in the medicinal materials. Pearson correlation analysis was performed to explore the relationship between soil microbial communities and the active ingredients. α-diversity results showed that the Yaowangmiao village (YWM) microbial community had the highest richness and diversity, while Xingzhoucun (XZC) had the lowest, and Beiwushijiazi village (BWSJZ) had the lowest fungal community diversity and richness. PCoA analysis at the phylum level indicated that soil bacterial communities were more dispersed than fungal communities among different regions. The bacterial community in XZC significantly differed from other regions, while fungal communities in BWSJZ and Ximiaogong village (XMG) showed considerable differences from other regions. The content of active ingredients in different regions showed that Yuzhangzi village (YZZ) and BWSJZ had higher content and better quality of medicinal materials according to the content of atractylodesin specified in the Chinese Pharmacopoeia Commission. The dominant bacterial phylum in the rhizosphere soil of YZZ was <i>Acidobacteriota</i>, and the dominant genus was <i>RB41</i>. In BWSJZ, <i>Acidobacteriota</i> was the dominant bacterial phylum, with <i>Arthrobacter</i> and <i>unclassified_f_Vicinamibacteraceae</i> as dominant genera; the dominant fungal phylum was <i>Basidiomycota</i>, with <i>Tausonia</i> as the dominant genus. Different bacterial and fungal communities synergistically promoted or inhibited the synthesis of four active ingredients.</p><p><strong>Conclusion: </strong>In short, this provides a theoretical basis for the distribution of soil rhizosphere microbial communities in the cultivation of <i>A. chinensis</i> and offers a reference for the cultivation of <i>A. chinensis</i> medicinal materials.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2473517"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2025.2473517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Analyzing the rhizosphere microbial community structure of Atractylodes chinensis from different regions and its correlation with the accumulation of main medicinal active ingredients, this study aims to explore the impact of rhizosphere soil microorganisms on the effective components of A. chinensis, providing a scientific basis for the high-quality and high-yield cultivation of A. chinensis.

Methods and results: The rhizosphere soil of three-year-old A. chinensis was used as the research object. High-throughput sequencing technology was employed to analyze the rhizosphere bacterial and fungal community structures. High Performance Liquid Chromatography (HPLC) was used to detect the contents of atractylodin, atractylon, β-eudesmol, and atractylenolide III in the medicinal materials. Pearson correlation analysis was performed to explore the relationship between soil microbial communities and the active ingredients. α-diversity results showed that the Yaowangmiao village (YWM) microbial community had the highest richness and diversity, while Xingzhoucun (XZC) had the lowest, and Beiwushijiazi village (BWSJZ) had the lowest fungal community diversity and richness. PCoA analysis at the phylum level indicated that soil bacterial communities were more dispersed than fungal communities among different regions. The bacterial community in XZC significantly differed from other regions, while fungal communities in BWSJZ and Ximiaogong village (XMG) showed considerable differences from other regions. The content of active ingredients in different regions showed that Yuzhangzi village (YZZ) and BWSJZ had higher content and better quality of medicinal materials according to the content of atractylodesin specified in the Chinese Pharmacopoeia Commission. The dominant bacterial phylum in the rhizosphere soil of YZZ was Acidobacteriota, and the dominant genus was RB41. In BWSJZ, Acidobacteriota was the dominant bacterial phylum, with Arthrobacter and unclassified_f_Vicinamibacteraceae as dominant genera; the dominant fungal phylum was Basidiomycota, with Tausonia as the dominant genus. Different bacterial and fungal communities synergistically promoted or inhibited the synthesis of four active ingredients.

Conclusion: In short, this provides a theoretical basis for the distribution of soil rhizosphere microbial communities in the cultivation of A. chinensis and offers a reference for the cultivation of A. chinensis medicinal materials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信