A Review of Metabolic Dysregulation in Lymphocytic Cicatricial Alopecia: Exploring the Connections and Therapeutic Implications.

Aaron Bao, Lindsey A Bordone, Crystal Aguh
{"title":"A Review of Metabolic Dysregulation in Lymphocytic Cicatricial Alopecia: Exploring the Connections and Therapeutic Implications.","authors":"Aaron Bao, Lindsey A Bordone, Crystal Aguh","doi":"10.1016/j.jid.2025.01.036","DOIUrl":null,"url":null,"abstract":"<p><p>Lymphocytic primary cicatricial alopecia (LPCA) is an inflammatory disorder characterized by permanent hair follicle destruction and fibrosis. Recent evidence suggests a significant link between LPCA and metabolic dysregulation, particularly diabetes and dyslipidemia. This review examines the emerging role of metabolism in LPCA pathogenesis and its implications for novel therapeutic approaches. Epidemiologic studies demonstrate increased prevalence of metabolic disorders among patients with LPCA, whereas molecular investigations reveal altered metabolic pathways in affected hair follicles, including disruptions in peroxisome proliferator-activated receptor γ signaling and adenosine monophosphate-activated protein kinase activation, mechanisms that parallel those observed in other fibrotic diseases. These pathways appear to precede inflammatory changes, suggesting metabolic dysfunction as a primary trigger rather than a secondary effect. Preliminary treatments targeting these pathways, such as pioglitazone and metformin, have shown promising results in normalizing lipid metabolism and reducing inflammation, although their clinical efficacy across LPCA subtypes requires further investigation. The review also explores emerging therapeutic possibilities, including glucagon-like peptide-1 agonists. Understanding the interplay between metabolic disturbances, fibrosis, and inflammation in the pathogenesis of LPCA offers new avenues for both research and treatment. This paradigm shift suggests the need for metabolic screening in patients with LPCA and highlights the potential for developing more comprehensive, metabolism-targeted therapies to improve outcomes in these challenging hair disorders.</p>","PeriodicalId":94239,"journal":{"name":"The Journal of investigative dermatology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of investigative dermatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jid.2025.01.036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lymphocytic primary cicatricial alopecia (LPCA) is an inflammatory disorder characterized by permanent hair follicle destruction and fibrosis. Recent evidence suggests a significant link between LPCA and metabolic dysregulation, particularly diabetes and dyslipidemia. This review examines the emerging role of metabolism in LPCA pathogenesis and its implications for novel therapeutic approaches. Epidemiologic studies demonstrate increased prevalence of metabolic disorders among patients with LPCA, whereas molecular investigations reveal altered metabolic pathways in affected hair follicles, including disruptions in peroxisome proliferator-activated receptor γ signaling and adenosine monophosphate-activated protein kinase activation, mechanisms that parallel those observed in other fibrotic diseases. These pathways appear to precede inflammatory changes, suggesting metabolic dysfunction as a primary trigger rather than a secondary effect. Preliminary treatments targeting these pathways, such as pioglitazone and metformin, have shown promising results in normalizing lipid metabolism and reducing inflammation, although their clinical efficacy across LPCA subtypes requires further investigation. The review also explores emerging therapeutic possibilities, including glucagon-like peptide-1 agonists. Understanding the interplay between metabolic disturbances, fibrosis, and inflammation in the pathogenesis of LPCA offers new avenues for both research and treatment. This paradigm shift suggests the need for metabolic screening in patients with LPCA and highlights the potential for developing more comprehensive, metabolism-targeted therapies to improve outcomes in these challenging hair disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信