{"title":"A Review of Metabolic Dysregulation in Lymphocytic Cicatricial Alopecia: Exploring the Connections and Therapeutic Implications.","authors":"Aaron Bao, Lindsey A Bordone, Crystal Aguh","doi":"10.1016/j.jid.2025.01.036","DOIUrl":null,"url":null,"abstract":"<p><p>Lymphocytic primary cicatricial alopecia (LPCA) is an inflammatory disorder characterized by permanent hair follicle destruction and fibrosis. Recent evidence suggests a significant link between LPCA and metabolic dysregulation, particularly diabetes and dyslipidemia. This review examines the emerging role of metabolism in LPCA pathogenesis and its implications for novel therapeutic approaches. Epidemiologic studies demonstrate increased prevalence of metabolic disorders among patients with LPCA, whereas molecular investigations reveal altered metabolic pathways in affected hair follicles, including disruptions in peroxisome proliferator-activated receptor γ signaling and adenosine monophosphate-activated protein kinase activation, mechanisms that parallel those observed in other fibrotic diseases. These pathways appear to precede inflammatory changes, suggesting metabolic dysfunction as a primary trigger rather than a secondary effect. Preliminary treatments targeting these pathways, such as pioglitazone and metformin, have shown promising results in normalizing lipid metabolism and reducing inflammation, although their clinical efficacy across LPCA subtypes requires further investigation. The review also explores emerging therapeutic possibilities, including glucagon-like peptide-1 agonists. Understanding the interplay between metabolic disturbances, fibrosis, and inflammation in the pathogenesis of LPCA offers new avenues for both research and treatment. This paradigm shift suggests the need for metabolic screening in patients with LPCA and highlights the potential for developing more comprehensive, metabolism-targeted therapies to improve outcomes in these challenging hair disorders.</p>","PeriodicalId":94239,"journal":{"name":"The Journal of investigative dermatology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of investigative dermatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jid.2025.01.036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lymphocytic primary cicatricial alopecia (LPCA) is an inflammatory disorder characterized by permanent hair follicle destruction and fibrosis. Recent evidence suggests a significant link between LPCA and metabolic dysregulation, particularly diabetes and dyslipidemia. This review examines the emerging role of metabolism in LPCA pathogenesis and its implications for novel therapeutic approaches. Epidemiologic studies demonstrate increased prevalence of metabolic disorders among patients with LPCA, whereas molecular investigations reveal altered metabolic pathways in affected hair follicles, including disruptions in peroxisome proliferator-activated receptor γ signaling and adenosine monophosphate-activated protein kinase activation, mechanisms that parallel those observed in other fibrotic diseases. These pathways appear to precede inflammatory changes, suggesting metabolic dysfunction as a primary trigger rather than a secondary effect. Preliminary treatments targeting these pathways, such as pioglitazone and metformin, have shown promising results in normalizing lipid metabolism and reducing inflammation, although their clinical efficacy across LPCA subtypes requires further investigation. The review also explores emerging therapeutic possibilities, including glucagon-like peptide-1 agonists. Understanding the interplay between metabolic disturbances, fibrosis, and inflammation in the pathogenesis of LPCA offers new avenues for both research and treatment. This paradigm shift suggests the need for metabolic screening in patients with LPCA and highlights the potential for developing more comprehensive, metabolism-targeted therapies to improve outcomes in these challenging hair disorders.