Obesity classification: a comparative study of machine learning models excluding weight and height data.

Revista da Associacao Medica Brasileira (1992) Pub Date : 2025-03-17 eCollection Date: 2025-01-01 DOI:10.1590/1806-9282.20241282
Ahmed Cihad Genc, Erkut Arıcan
{"title":"Obesity classification: a comparative study of machine learning models excluding weight and height data.","authors":"Ahmed Cihad Genc, Erkut Arıcan","doi":"10.1590/1806-9282.20241282","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Obesity is a global health problem. The aim is to analyze the effectiveness of machine learning models in predicting obesity classes and to determine which model performs best in obesity classification.</p><p><strong>Methods: </strong>We used a dataset with 2,111 individuals categorized into seven groups based on their body mass index, ranging from average weight to class III obesity. Our classification models were trained and tested using demographic information like age, gender, and eating habits without including height and weight variables.</p><p><strong>Results: </strong>The study demonstrated that when trained on demographic information, machine learning can classify body mass index. The random forest model provided the highest performance scores among all the classification models tested in this research.</p><p><strong>Conclusion: </strong>Machine learning methods have the potential to be used more extensively in the classification of obesity and in more effective efforts to combat obesity.</p>","PeriodicalId":94194,"journal":{"name":"Revista da Associacao Medica Brasileira (1992)","volume":"71 1","pages":"e20241282"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11918863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista da Associacao Medica Brasileira (1992)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1806-9282.20241282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Obesity is a global health problem. The aim is to analyze the effectiveness of machine learning models in predicting obesity classes and to determine which model performs best in obesity classification.

Methods: We used a dataset with 2,111 individuals categorized into seven groups based on their body mass index, ranging from average weight to class III obesity. Our classification models were trained and tested using demographic information like age, gender, and eating habits without including height and weight variables.

Results: The study demonstrated that when trained on demographic information, machine learning can classify body mass index. The random forest model provided the highest performance scores among all the classification models tested in this research.

Conclusion: Machine learning methods have the potential to be used more extensively in the classification of obesity and in more effective efforts to combat obesity.

肥胖分类:排除体重和身高数据的机器学习模型的比较研究。
目的:肥胖是一个全球性的健康问题。目的是分析机器学习模型在预测肥胖类别方面的有效性,并确定哪种模型在肥胖分类方面表现最好。方法:我们使用了一个包含2111人的数据集,根据他们的体重指数(从平均体重到III级肥胖)将他们分为七组。我们的分类模型是使用年龄、性别和饮食习惯等人口统计信息进行训练和测试的,不包括身高和体重变量。结果:研究表明,在人口统计信息的训练下,机器学习可以对身体质量指数进行分类。在本研究测试的所有分类模型中,随机森林模型的性能得分最高。结论:机器学习方法有潜力更广泛地应用于肥胖分类和更有效地对抗肥胖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信