Zhi Tang , Lin Bo , Hao Bai , Zuqiang Su , Shuxian Wang , Yanhao Zhao
{"title":"Envelope spectrum knowledge-guided domain invariant representation learning strategy for intelligent fault diagnosis of bearing","authors":"Zhi Tang , Lin Bo , Hao Bai , Zuqiang Su , Shuxian Wang , Yanhao Zhao","doi":"10.1016/j.isatra.2025.03.004","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning has significantly advanced bearing fault diagnosis. Traditional models rely on the assumption of independent and identically distributed, which is frequently violated due to variations in rotational speeds and loads during bearing fault diagnosis. The fault diagnosis of the bearing based on representation learning lacks the consideration of spectrum knowledge and representation diversity under multiple working conditions. Therefore, this study presents a domain-invariant representation learning strategy (DIRLs) for diagnosing bearing faults across differing working conditions. DIRLs, by leveraging envelope spectrum knowledge distillation, captures the Fourier characteristics as domain-invariant features and secures robust health state representations by aligning high-order statistics of the samples under different working conditions. Moreover, an innovative loss function, which maximizes the two-paradigm metric of the health state representation, is designed to enrich representation diversity. Experimental results demonstrate an average AUC improvement of 28.6 % on the Paderborn-bearing dataset and an overall diagnostic accuracy of 88.7 % on a private bearing dataset, validating the effectiveness of the proposed method.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"160 ","pages":"Pages 205-217"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057825001454","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has significantly advanced bearing fault diagnosis. Traditional models rely on the assumption of independent and identically distributed, which is frequently violated due to variations in rotational speeds and loads during bearing fault diagnosis. The fault diagnosis of the bearing based on representation learning lacks the consideration of spectrum knowledge and representation diversity under multiple working conditions. Therefore, this study presents a domain-invariant representation learning strategy (DIRLs) for diagnosing bearing faults across differing working conditions. DIRLs, by leveraging envelope spectrum knowledge distillation, captures the Fourier characteristics as domain-invariant features and secures robust health state representations by aligning high-order statistics of the samples under different working conditions. Moreover, an innovative loss function, which maximizes the two-paradigm metric of the health state representation, is designed to enrich representation diversity. Experimental results demonstrate an average AUC improvement of 28.6 % on the Paderborn-bearing dataset and an overall diagnostic accuracy of 88.7 % on a private bearing dataset, validating the effectiveness of the proposed method.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.