Beyond Binary Decisions: Evaluating the Effects of AI Error Type on Trust and Performance in AI-Assisted Tasks.

IF 2.9 3区 心理学 Q1 BEHAVIORAL SCIENCES
Jin Yong Kim, Corey Lester, X Jessie Yang
{"title":"Beyond Binary Decisions: Evaluating the Effects of AI Error Type on Trust and Performance in AI-Assisted Tasks.","authors":"Jin Yong Kim, Corey Lester, X Jessie Yang","doi":"10.1177/00187208251326795","DOIUrl":null,"url":null,"abstract":"<p><p>ObjectiveWe investigated how various error patterns from an AI aid in the nonbinary decision scenario influence human operators' trust in the AI system and their task performance.BackgroundExisting research on trust in automation/autonomy predominantly uses the signal detection theory (SDT) to model autonomy performance. The SDT classifies the world into binary states and hence oversimplifies the interaction observed in real-world scenarios. Allowing multi-class classification of the world reveals intriguing error patterns previously unexplored in prior literature.MethodThirty-five participants completed 60 trials of a simulated mental rotation task assisted by an AI with 70-80% reliability. Participants' trust in and dependence on the AI system and their performance were measured. By combining participants' initial performance and the AI aid's performance, five distinct patterns emerged. Mixed-effects models were built to examine the effects of different patterns on trust adjustment, performance, and reaction time.ResultsVarying error patterns from AI impacted performance, reaction times, and trust. Some AI errors provided false reassurance, misleading operators into believing their incorrect decisions were correct, worsening performance and trust. Paradoxically, some AI errors prompted safety checks and verifications, which, despite causing a moderate decrease in trust, ultimately enhanced overall performance.ConclusionThe findings demonstrate that the types of errors made by an AI system significantly affect human trust and performance, emphasizing the need to model the complicated human-AI interaction in real life.ApplicationThese insights can guide the development of AI systems that classify the state of the world into multiple classes, enabling the operators to make more informed and accurate decisions based on feedback.</p>","PeriodicalId":56333,"journal":{"name":"Human Factors","volume":" ","pages":"187208251326795"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00187208251326795","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

ObjectiveWe investigated how various error patterns from an AI aid in the nonbinary decision scenario influence human operators' trust in the AI system and their task performance.BackgroundExisting research on trust in automation/autonomy predominantly uses the signal detection theory (SDT) to model autonomy performance. The SDT classifies the world into binary states and hence oversimplifies the interaction observed in real-world scenarios. Allowing multi-class classification of the world reveals intriguing error patterns previously unexplored in prior literature.MethodThirty-five participants completed 60 trials of a simulated mental rotation task assisted by an AI with 70-80% reliability. Participants' trust in and dependence on the AI system and their performance were measured. By combining participants' initial performance and the AI aid's performance, five distinct patterns emerged. Mixed-effects models were built to examine the effects of different patterns on trust adjustment, performance, and reaction time.ResultsVarying error patterns from AI impacted performance, reaction times, and trust. Some AI errors provided false reassurance, misleading operators into believing their incorrect decisions were correct, worsening performance and trust. Paradoxically, some AI errors prompted safety checks and verifications, which, despite causing a moderate decrease in trust, ultimately enhanced overall performance.ConclusionThe findings demonstrate that the types of errors made by an AI system significantly affect human trust and performance, emphasizing the need to model the complicated human-AI interaction in real life.ApplicationThese insights can guide the development of AI systems that classify the state of the world into multiple classes, enabling the operators to make more informed and accurate decisions based on feedback.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Factors
Human Factors 管理科学-行为科学
CiteScore
10.60
自引率
6.10%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Human Factors: The Journal of the Human Factors and Ergonomics Society publishes peer-reviewed scientific studies in human factors/ergonomics that present theoretical and practical advances concerning the relationship between people and technologies, tools, environments, and systems. Papers published in Human Factors leverage fundamental knowledge of human capabilities and limitations – and the basic understanding of cognitive, physical, behavioral, physiological, social, developmental, affective, and motivational aspects of human performance – to yield design principles; enhance training, selection, and communication; and ultimately improve human-system interfaces and sociotechnical systems that lead to safer and more effective outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信