{"title":"Beyond Binary Decisions: Evaluating the Effects of AI Error Type on Trust and Performance in AI-Assisted Tasks.","authors":"Jin Yong Kim, Corey Lester, X Jessie Yang","doi":"10.1177/00187208251326795","DOIUrl":null,"url":null,"abstract":"<p><p>ObjectiveWe investigated how various error patterns from an AI aid in the nonbinary decision scenario influence human operators' trust in the AI system and their task performance.BackgroundExisting research on trust in automation/autonomy predominantly uses the signal detection theory (SDT) to model autonomy performance. The SDT classifies the world into binary states and hence oversimplifies the interaction observed in real-world scenarios. Allowing multi-class classification of the world reveals intriguing error patterns previously unexplored in prior literature.MethodThirty-five participants completed 60 trials of a simulated mental rotation task assisted by an AI with 70-80% reliability. Participants' trust in and dependence on the AI system and their performance were measured. By combining participants' initial performance and the AI aid's performance, five distinct patterns emerged. Mixed-effects models were built to examine the effects of different patterns on trust adjustment, performance, and reaction time.ResultsVarying error patterns from AI impacted performance, reaction times, and trust. Some AI errors provided false reassurance, misleading operators into believing their incorrect decisions were correct, worsening performance and trust. Paradoxically, some AI errors prompted safety checks and verifications, which, despite causing a moderate decrease in trust, ultimately enhanced overall performance.ConclusionThe findings demonstrate that the types of errors made by an AI system significantly affect human trust and performance, emphasizing the need to model the complicated human-AI interaction in real life.ApplicationThese insights can guide the development of AI systems that classify the state of the world into multiple classes, enabling the operators to make more informed and accurate decisions based on feedback.</p>","PeriodicalId":56333,"journal":{"name":"Human Factors","volume":" ","pages":"187208251326795"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00187208251326795","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
ObjectiveWe investigated how various error patterns from an AI aid in the nonbinary decision scenario influence human operators' trust in the AI system and their task performance.BackgroundExisting research on trust in automation/autonomy predominantly uses the signal detection theory (SDT) to model autonomy performance. The SDT classifies the world into binary states and hence oversimplifies the interaction observed in real-world scenarios. Allowing multi-class classification of the world reveals intriguing error patterns previously unexplored in prior literature.MethodThirty-five participants completed 60 trials of a simulated mental rotation task assisted by an AI with 70-80% reliability. Participants' trust in and dependence on the AI system and their performance were measured. By combining participants' initial performance and the AI aid's performance, five distinct patterns emerged. Mixed-effects models were built to examine the effects of different patterns on trust adjustment, performance, and reaction time.ResultsVarying error patterns from AI impacted performance, reaction times, and trust. Some AI errors provided false reassurance, misleading operators into believing their incorrect decisions were correct, worsening performance and trust. Paradoxically, some AI errors prompted safety checks and verifications, which, despite causing a moderate decrease in trust, ultimately enhanced overall performance.ConclusionThe findings demonstrate that the types of errors made by an AI system significantly affect human trust and performance, emphasizing the need to model the complicated human-AI interaction in real life.ApplicationThese insights can guide the development of AI systems that classify the state of the world into multiple classes, enabling the operators to make more informed and accurate decisions based on feedback.
期刊介绍:
Human Factors: The Journal of the Human Factors and Ergonomics Society publishes peer-reviewed scientific studies in human factors/ergonomics that present theoretical and practical advances concerning the relationship between people and technologies, tools, environments, and systems. Papers published in Human Factors leverage fundamental knowledge of human capabilities and limitations – and the basic understanding of cognitive, physical, behavioral, physiological, social, developmental, affective, and motivational aspects of human performance – to yield design principles; enhance training, selection, and communication; and ultimately improve human-system interfaces and sociotechnical systems that lead to safer and more effective outcomes.