Bayesian Growth Curve Modeling with Measurement Error in Time.

IF 3.5 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Multivariate Behavioral Research Pub Date : 2025-07-01 Epub Date: 2025-03-19 DOI:10.1080/00273171.2025.2473937
Lijin Zhang, Wen Qu, Zhiyong Zhang
{"title":"Bayesian Growth Curve Modeling with Measurement Error in Time.","authors":"Lijin Zhang, Wen Qu, Zhiyong Zhang","doi":"10.1080/00273171.2025.2473937","DOIUrl":null,"url":null,"abstract":"<p><p>Growth curve modeling has been widely used in many disciplines to understand the trajectories of growth. Two popular forms utilized in the real-world analyses are the linear and quadratic growth curve models. These models operate on the assumption that measurements are conducted exactly at pre-set time or intervals. In essence, the reliability of these models is deeply tied to the punctuality and consistency of the data collection process. However, in real-world data collection, this assumption is often violated. Deviations from the ideal measurement schedule often emerge, resulting in measurement error in time and consequent biased responses. Our simulation findings indicate that such error can skew estimations, especially in quadratic GCM. To account for the measurement error in time, we introduce a Bayesian growth curve model to accommodate the error in the individual time values. We demonstrate the performance of the proposed approach through simulation studies. Furthermore, to illustrate its application in practice, we provide a real-data example, underscoring the practical benefits of the proposed model.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"748-766"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2025.2473937","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Growth curve modeling has been widely used in many disciplines to understand the trajectories of growth. Two popular forms utilized in the real-world analyses are the linear and quadratic growth curve models. These models operate on the assumption that measurements are conducted exactly at pre-set time or intervals. In essence, the reliability of these models is deeply tied to the punctuality and consistency of the data collection process. However, in real-world data collection, this assumption is often violated. Deviations from the ideal measurement schedule often emerge, resulting in measurement error in time and consequent biased responses. Our simulation findings indicate that such error can skew estimations, especially in quadratic GCM. To account for the measurement error in time, we introduce a Bayesian growth curve model to accommodate the error in the individual time values. We demonstrate the performance of the proposed approach through simulation studies. Furthermore, to illustrate its application in practice, we provide a real-data example, underscoring the practical benefits of the proposed model.

具有时间测量误差的贝叶斯生长曲线建模。
生长曲线模型已广泛应用于许多学科,以了解生长轨迹。在现实世界分析中使用的两种流行形式是线性和二次增长曲线模型。这些模型是在假设测量精确地在预先设定的时间或间隔进行的基础上运行的。从本质上讲,这些模型的可靠性与数据收集过程的准时性和一致性密切相关。然而,在实际的数据收集中,这个假设经常被违背。通常会出现与理想测量计划的偏差,从而导致测量时间误差和相应的偏差响应。我们的仿真结果表明,这种误差会使估计偏斜,特别是在二次GCM中。为了解释时间上的测量误差,我们引入了贝叶斯增长曲线模型来适应单个时间值的误差。我们通过仿真研究证明了所提出方法的性能。此外,为了说明其在实践中的应用,我们提供了一个实际数据示例,强调了所提出模型的实际效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信