Evaluating the impact of improved maize varieties on agricultural productivity and technical efficiency among smallholder farmers in the Eastern Cape, South Africa: an empirical analysis.
IF 4.5 2区 农林科学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Lelethu Mdoda, Nthabeleng Tamako, Lungile S Gidi, Denver Naidoo
{"title":"Evaluating the impact of improved maize varieties on agricultural productivity and technical efficiency among smallholder farmers in the Eastern Cape, South Africa: an empirical analysis.","authors":"Lelethu Mdoda, Nthabeleng Tamako, Lungile S Gidi, Denver Naidoo","doi":"10.1080/21645698.2025.2476667","DOIUrl":null,"url":null,"abstract":"<p><p>Agriculture is essential to South Africa's economy, and maize is a crucial crop for smallholder farmers in the Eastern Cape. Traditional maize varieties face challenges related to productivity and resilience, prompting the promotion of Improved Maize Varieties (IMVs) to enhance yields and efficiency. This study investigates the impact of IMV adoption on agricultural productivity and technical efficiency in the region, addressing a gap in empirical evidence. Using a multistage random sampling approach, data was collected from 150 smallholder maize farmers and analyzed using stochastic production frontier, endogenous switching regression models, and the stochastic meta-frontier model. The study results reveal that 62% of the farmers are male, averaging 53 years old, and manage about four hectares with a mean monthly income of ZAR 3,562.13. Challenges, such as rainfall shortages and limited access to credit, hinder IMV adoption, although high access to extension services and diverse input use positively affect productivity. The adopted IMVs by farmers, including open-pollinated, hybrid, and genetically modified (GM) varieties, significantly boost maize yields and farm returns - yielding an average increase of 1.92 kg/ha and returns of ZAR 468.01 per hectare. Key adoption factors are education, farm size, and access to seeds and extension services, whereas barriers include market distance and family size. Technical efficiency is generally high at 74%, with farm size, seed, pesticides, agrochemicals, and fertilizers positively impacting maize production, whereas family labor negatively affects it. Factors such as age, education, and access to services significantly reduce technical inefficiency, while herd size, off-farm income, and distance to the market have mixed effects. The stochastic meta-frontier approach reveals that smallholder farmers adopting improved technologies show higher mean technical efficiency, indicating that advanced methods contribute to better resource use and productivity than traditional systems. This study suggests that targeted support is needed for farmers, enhancing access to extension services, affordable seeds, financial support, and investing in infrastructure and education can further improve adoption rates, technical efficiency, and overall productivity. Promoting improved technologies such as maize varieties will enhance the technical efficiency of farms, regardless of their adoption status. It would be key to improving overall agricultural productivity and farm household incomes.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"272-304"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2025.2476667","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Agriculture is essential to South Africa's economy, and maize is a crucial crop for smallholder farmers in the Eastern Cape. Traditional maize varieties face challenges related to productivity and resilience, prompting the promotion of Improved Maize Varieties (IMVs) to enhance yields and efficiency. This study investigates the impact of IMV adoption on agricultural productivity and technical efficiency in the region, addressing a gap in empirical evidence. Using a multistage random sampling approach, data was collected from 150 smallholder maize farmers and analyzed using stochastic production frontier, endogenous switching regression models, and the stochastic meta-frontier model. The study results reveal that 62% of the farmers are male, averaging 53 years old, and manage about four hectares with a mean monthly income of ZAR 3,562.13. Challenges, such as rainfall shortages and limited access to credit, hinder IMV adoption, although high access to extension services and diverse input use positively affect productivity. The adopted IMVs by farmers, including open-pollinated, hybrid, and genetically modified (GM) varieties, significantly boost maize yields and farm returns - yielding an average increase of 1.92 kg/ha and returns of ZAR 468.01 per hectare. Key adoption factors are education, farm size, and access to seeds and extension services, whereas barriers include market distance and family size. Technical efficiency is generally high at 74%, with farm size, seed, pesticides, agrochemicals, and fertilizers positively impacting maize production, whereas family labor negatively affects it. Factors such as age, education, and access to services significantly reduce technical inefficiency, while herd size, off-farm income, and distance to the market have mixed effects. The stochastic meta-frontier approach reveals that smallholder farmers adopting improved technologies show higher mean technical efficiency, indicating that advanced methods contribute to better resource use and productivity than traditional systems. This study suggests that targeted support is needed for farmers, enhancing access to extension services, affordable seeds, financial support, and investing in infrastructure and education can further improve adoption rates, technical efficiency, and overall productivity. Promoting improved technologies such as maize varieties will enhance the technical efficiency of farms, regardless of their adoption status. It would be key to improving overall agricultural productivity and farm household incomes.
期刊介绍:
GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers.
GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer.
Topics covered include, but are not limited to:
• Production and analysis of transgenic crops
• Gene insertion studies
• Gene silencing
• Factors affecting gene expression
• Post-translational analysis
• Molecular farming
• Field trial analysis
• Commercialization of modified crops
• Safety and regulatory affairs
BIOLOGICAL SCIENCE AND TECHNOLOGY
• Biofuels
• Data from field trials
• Development of transformation technology
• Elimination of pollutants (Bioremediation)
• Gene silencing mechanisms
• Genome Editing
• Herbicide resistance
• Molecular farming
• Pest resistance
• Plant reproduction (e.g., male sterility, hybrid breeding, apomixis)
• Plants with altered composition
• Tolerance to abiotic stress
• Transgenesis in agriculture
• Biofortification and nutrients improvement
• Genomic, proteomic and bioinformatics methods used for developing GM cops
ECONOMIC, POLITICAL AND SOCIAL ISSUES
• Commercialization
• Consumer attitudes
• International bodies
• National and local government policies
• Public perception, intellectual property, education, (bio)ethical issues
• Regulation, environmental impact and containment
• Socio-economic impact
• Food safety and security
• Risk assessments