Amit Ravindra Patil, Fabricio Fiengo Perez, Jonathan Lambrechts, Eric Deleersnijder
{"title":"Numerical modelling of the transport and impact of<sup>137</sup>Cs and<sup>131</sup>I on the Meuse-Campine Canals after a potential nuclear accident.","authors":"Amit Ravindra Patil, Fabricio Fiengo Perez, Jonathan Lambrechts, Eric Deleersnijder","doi":"10.1088/1361-6498/adc1db","DOIUrl":null,"url":null,"abstract":"<p><p>The Meuse River in Belgium can be impacted by the two nuclear power plants (Tihange and Chooz) located on its banks. Nuclear disasters such as the Fukushima and Chernobyl accidents have illustrated the risks associated with the civilian nuclear industry. In such situations, predictive models become crucial for developing environmental strategies to minimize the potential impact. In this study, we use the SLIM model to simulate the transport of<sup>137</sup>Cs and<sup>131</sup>I in the Meuse River system in Belgium. Several hypothetical accidental scenarios are considered for the radionuclide releases based on past nuclear accidents. The simulated radioactive distributions are then used to estimate the individual dose for drinking water. The radionuclide transport in the Meuse River is within days. While the higher peak concentration in the Meuse River results in higher individual dose. The Albert canal being the largest channel among the Campine canals; therefore, the radioactive plume stays over a month. The estimated individual doses for releases from Chooz Nuclear power plant near Tailfer reached 0.2 mSv within three days. Although it takes days, the doses in the Albert Canal reach values up to 0.46 mSv at Haccourt (hypothetical locations). The water extraction points in Herentals, located downstream of the canal, has a negligible individual dose estimation. Higher doses are the consequence of<sup>131</sup>I than<sup>137</sup>Cs due to the larger release scenario.</p>","PeriodicalId":50068,"journal":{"name":"Journal of Radiological Protection","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiological Protection","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1361-6498/adc1db","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Meuse River in Belgium can be impacted by the two nuclear power plants (Tihange and Chooz) located on its banks. Nuclear disasters such as the Fukushima and Chernobyl accidents have illustrated the risks associated with the civilian nuclear industry. In such situations, predictive models become crucial for developing environmental strategies to minimize the potential impact. In this study, we use the SLIM model to simulate the transport of137Cs and131I in the Meuse River system in Belgium. Several hypothetical accidental scenarios are considered for the radionuclide releases based on past nuclear accidents. The simulated radioactive distributions are then used to estimate the individual dose for drinking water. The radionuclide transport in the Meuse River is within days. While the higher peak concentration in the Meuse River results in higher individual dose. The Albert canal being the largest channel among the Campine canals; therefore, the radioactive plume stays over a month. The estimated individual doses for releases from Chooz Nuclear power plant near Tailfer reached 0.2 mSv within three days. Although it takes days, the doses in the Albert Canal reach values up to 0.46 mSv at Haccourt (hypothetical locations). The water extraction points in Herentals, located downstream of the canal, has a negligible individual dose estimation. Higher doses are the consequence of131I than137Cs due to the larger release scenario.
期刊介绍:
Journal of Radiological Protection publishes articles on all aspects of radiological protection, including non-ionising as well as ionising radiations. Fields of interest range from research, development and theory to operational matters, education and training. The very wide spectrum of its topics includes: dosimetry, instrument development, specialized measuring techniques, epidemiology, biological effects (in vivo and in vitro) and risk and environmental impact assessments.
The journal encourages publication of data and code as well as results.