A wearable brain-computer interface to play an endless runner game by self-paced motor imagery.

Pasquale Arpaia, Antonio Esposito, Enza Galasso, Fortuna Galdieri, Angela Natalizio
{"title":"A wearable brain-computer interface to play an endless runner game by self-paced motor imagery.","authors":"Pasquale Arpaia, Antonio Esposito, Enza Galasso, Fortuna Galdieri, Angela Natalizio","doi":"10.1088/1741-2552/adc205","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>A wearable brain-computer interface is proposed and validated experimentally in relation to the real-time control of an endless runner game by self-paced motor imagery(MI).<i>Approach.</i>Electroencephalographic signals were recorded via eight wet electrodes. The processing pipeline involved a filter-bank common spatial pattern approach and the combination of three binary classifiers exploiting linear discriminant analysis. This enabled the discrimination between imagining left-hand, right-hand, and no movement. Each mental task corresponded to an avatar horizontal motion within the game. Twenty-three healthy subjects participated to the experiments and their data are made publicly available. A custom metric was proposed to assess avatar control performance during the gaming phase. The game consisted of two levels, and after each, participants completed a questionnaire to self-assess their engagement and gaming experience.<i>Main results.</i>The mean classification accuracies resulted 73%, 73%, and 67% for left-rest, right-rest, and left-right discrimination, respectively. In the gaming phase, subjects with higher accuracies for left-rest and right-rest pair exhibited higher performance in terms of the custom metric. Correlation of the offline and real-time performance was investigated. The left-right MI did not correlate to the gaming phase performance due to the poor mean accuracy of the calibration. Finally, the engagement questionnaires revealed that level 1 and level 2 were not perceived as frustrating, despite the increasing difficulty.<i>Significance.</i>The work contributes to the development of wearable and self-paced interfaces for real-time control. These enhance user experience by guaranteeing a more natural interaction with respect to synchronous neural interfaces. Moving beyond benchmark datasets, the work paves the way to future applications on mobile devices for everyday use.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adc205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.A wearable brain-computer interface is proposed and validated experimentally in relation to the real-time control of an endless runner game by self-paced motor imagery(MI).Approach.Electroencephalographic signals were recorded via eight wet electrodes. The processing pipeline involved a filter-bank common spatial pattern approach and the combination of three binary classifiers exploiting linear discriminant analysis. This enabled the discrimination between imagining left-hand, right-hand, and no movement. Each mental task corresponded to an avatar horizontal motion within the game. Twenty-three healthy subjects participated to the experiments and their data are made publicly available. A custom metric was proposed to assess avatar control performance during the gaming phase. The game consisted of two levels, and after each, participants completed a questionnaire to self-assess their engagement and gaming experience.Main results.The mean classification accuracies resulted 73%, 73%, and 67% for left-rest, right-rest, and left-right discrimination, respectively. In the gaming phase, subjects with higher accuracies for left-rest and right-rest pair exhibited higher performance in terms of the custom metric. Correlation of the offline and real-time performance was investigated. The left-right MI did not correlate to the gaming phase performance due to the poor mean accuracy of the calibration. Finally, the engagement questionnaires revealed that level 1 and level 2 were not perceived as frustrating, despite the increasing difficulty.Significance.The work contributes to the development of wearable and self-paced interfaces for real-time control. These enhance user experience by guaranteeing a more natural interaction with respect to synchronous neural interfaces. Moving beyond benchmark datasets, the work paves the way to future applications on mobile devices for everyday use.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信