{"title":"Developing a method for predicting DNA nucleosomal sequences using deep learning.","authors":"Nizal Alshammry","doi":"10.1177/09287329241297900","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundDeep learning excels at processing raw data because it automatically extracts and classifies high-level features. Despite biology's low popularity in data analysis, incorporating computer technology can improve biological research.ObjectiveTo create a deep learning model that can identify nucleosomes from nucleotide sequences and to show that simpler models outperform more complicated ones in solving biological challenges.MethodsA classifier was created utilising deep learning and machine learning approaches. The final model consists of two convolutional layers, one max pooling layer, two fully connected layers, and a dropout regularisation layer. This structure was chosen on the basis of the 'less is frequently more' approach, which emphasises simple design without large hidden layers.ResultsExperimental results show that deep learning methods, specifically deep neural networks, outperform typical machine learning algorithms for recognising nucleosomes. The simplified network architecture proved suitable without the requirement for numerous hidden neurons, resulting in effective network performance.ConclusionThis study demonstrates that machine learning and other computational techniques may streamline and expedite the resolution of biological issues. The model helps identify nucleosomes and can be used in future research or labs. This study discusses the challenges of understanding and addressing simple biological problems with sophisticated computer technology and offers practical solutions for academic and economic sectors.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":"33 2","pages":"989-999"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329241297900","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundDeep learning excels at processing raw data because it automatically extracts and classifies high-level features. Despite biology's low popularity in data analysis, incorporating computer technology can improve biological research.ObjectiveTo create a deep learning model that can identify nucleosomes from nucleotide sequences and to show that simpler models outperform more complicated ones in solving biological challenges.MethodsA classifier was created utilising deep learning and machine learning approaches. The final model consists of two convolutional layers, one max pooling layer, two fully connected layers, and a dropout regularisation layer. This structure was chosen on the basis of the 'less is frequently more' approach, which emphasises simple design without large hidden layers.ResultsExperimental results show that deep learning methods, specifically deep neural networks, outperform typical machine learning algorithms for recognising nucleosomes. The simplified network architecture proved suitable without the requirement for numerous hidden neurons, resulting in effective network performance.ConclusionThis study demonstrates that machine learning and other computational techniques may streamline and expedite the resolution of biological issues. The model helps identify nucleosomes and can be used in future research or labs. This study discusses the challenges of understanding and addressing simple biological problems with sophisticated computer technology and offers practical solutions for academic and economic sectors.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).