MEOX1-mediated transcriptional regulation of circABHD3 exacerbates hepatic fibrosis through promoting m6A/YTHDF2-dependent YPEL3 mRNA decay to activate β-catenin signaling.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
PLoS Genetics Pub Date : 2025-03-18 eCollection Date: 2025-03-01 DOI:10.1371/journal.pgen.1011622
Limin Chen, Hui Yang, Juan Wang, Haoye Zhang, Kangkang Fu, Yu Yan, Zhenguo Liu
{"title":"MEOX1-mediated transcriptional regulation of circABHD3 exacerbates hepatic fibrosis through promoting m6A/YTHDF2-dependent YPEL3 mRNA decay to activate β-catenin signaling.","authors":"Limin Chen, Hui Yang, Juan Wang, Haoye Zhang, Kangkang Fu, Yu Yan, Zhenguo Liu","doi":"10.1371/journal.pgen.1011622","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatic fibrosis may progress to liver cirrhosis and eventually cause death. Epithelial-mesenchymal transition (EMT) of hepatocytes plays critical roles in hepatic fibrosis. Exploring the mechanisms underlying EMT is crucial for a better understanding of hepatic fibrosis pathogenesis.</p><p><strong>Methods: </strong>Hepatocyte EMT wad induced with TGF-β1 and evaluated by Western blotting and immunofluorescence staining. Methylated RNA immunoprecipitation (MeRIP) was applied to assess N6-methyladenosine (m6A) modification. RIP and RNA pull-down assays were performed to analyze the interaction between circABHD3, YTHDF2 and YPEL3 mRNA. MEOX1-mediated transcription of ABHD3 was examined by luciferase and chromatin immunoprecipitation (ChIP). Mice were intraperitoneally injected with CCl4 or treated with bile duct ligation (BDL) surgery for hepatic fibrosis induction. Liver injury and collagen deposition were examined with hematoxylin and eosin (HE), Masson, and Sirius Red staining. Alanine transaminase (ALT), aspartate transaminase (AST) and hydroxyproline (HYP) were examined using ELISA.</p><p><strong>Results: </strong>CircABHD3 was upregulated in in vitro and in vivo models of hepatic fibrosis and patients. Knockdown of circABHD3 inhibited TGF-β1-induced expression of fibrosis markers, EMT and mitochondrial impairment in hepatocytes. MEOX1 could directly bind to the promoter of ABHD3 to facilitate its transcription and subsequent circABHD3 generation. Knockdown of MEOX1 suppressed TGF-β1-induced EMT and mitochondrial impairment through suppression of circABHD3. CircABHD3 destabilized YPEL3 mRNA via promoting YTHDF2-dependent recognition of m6A-modified YPEL3 mRNA to trigger β-catenin signaling activation. Furthermore, circABHD3 silencing-mediated inhibition of EMT and mitochondrial impairment was counteracted by YPEL3 knockdown and activation of β-catenin signaling. Depletion of circABHD3 significantly reduced EMT, mitochondrial impairment and hepatic fibrosis via promoting YPEL3 expression and suppressing β-catenin signaling in vivo.</p><p><strong>Conclusion: </strong>MEOX1-mediated generation of circABHD3 promotes EMT and mitochondrial impairment by enhancing YTHDF2-mediated degradation of YPEL3 mRNA and activating downstream β-catenin signaling, thus exacerbating hepatic fibrosis.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011622"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11918346/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011622","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hepatic fibrosis may progress to liver cirrhosis and eventually cause death. Epithelial-mesenchymal transition (EMT) of hepatocytes plays critical roles in hepatic fibrosis. Exploring the mechanisms underlying EMT is crucial for a better understanding of hepatic fibrosis pathogenesis.

Methods: Hepatocyte EMT wad induced with TGF-β1 and evaluated by Western blotting and immunofluorescence staining. Methylated RNA immunoprecipitation (MeRIP) was applied to assess N6-methyladenosine (m6A) modification. RIP and RNA pull-down assays were performed to analyze the interaction between circABHD3, YTHDF2 and YPEL3 mRNA. MEOX1-mediated transcription of ABHD3 was examined by luciferase and chromatin immunoprecipitation (ChIP). Mice were intraperitoneally injected with CCl4 or treated with bile duct ligation (BDL) surgery for hepatic fibrosis induction. Liver injury and collagen deposition were examined with hematoxylin and eosin (HE), Masson, and Sirius Red staining. Alanine transaminase (ALT), aspartate transaminase (AST) and hydroxyproline (HYP) were examined using ELISA.

Results: CircABHD3 was upregulated in in vitro and in vivo models of hepatic fibrosis and patients. Knockdown of circABHD3 inhibited TGF-β1-induced expression of fibrosis markers, EMT and mitochondrial impairment in hepatocytes. MEOX1 could directly bind to the promoter of ABHD3 to facilitate its transcription and subsequent circABHD3 generation. Knockdown of MEOX1 suppressed TGF-β1-induced EMT and mitochondrial impairment through suppression of circABHD3. CircABHD3 destabilized YPEL3 mRNA via promoting YTHDF2-dependent recognition of m6A-modified YPEL3 mRNA to trigger β-catenin signaling activation. Furthermore, circABHD3 silencing-mediated inhibition of EMT and mitochondrial impairment was counteracted by YPEL3 knockdown and activation of β-catenin signaling. Depletion of circABHD3 significantly reduced EMT, mitochondrial impairment and hepatic fibrosis via promoting YPEL3 expression and suppressing β-catenin signaling in vivo.

Conclusion: MEOX1-mediated generation of circABHD3 promotes EMT and mitochondrial impairment by enhancing YTHDF2-mediated degradation of YPEL3 mRNA and activating downstream β-catenin signaling, thus exacerbating hepatic fibrosis.

meox1介导的circABHD3转录调控通过促进m6A/ ythdf2依赖的YPEL3 mRNA衰变激活β-catenin信号通路,从而加剧肝纤维化。
背景:肝纤维化可发展为肝硬化,最终导致死亡。肝细胞上皮间质转化(EMT)在肝纤维化中起着重要作用。探索EMT的机制对于更好地理解肝纤维化的发病机制至关重要。方法:用TGF-β1诱导肝细胞EMT,采用Western blotting和免疫荧光染色评价。采用甲基化RNA免疫沉淀法(MeRIP)评价n6 -甲基腺苷(m6A)修饰。采用RIP和RNA下拉法分析circABHD3、YTHDF2和YPEL3 mRNA之间的相互作用。荧光素酶和染色质免疫沉淀(ChIP)检测meox1介导的ABHD3转录。小鼠腹腔注射CCl4或胆管结扎(BDL)手术诱导肝纤维化。采用苏木精和伊红(HE)、Masson和Sirius Red染色检测肝损伤和胶原沉积。ELISA法检测丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)和羟脯氨酸(HYP)。结果:CircABHD3在体外和体内肝纤维化模型及患者中表达上调。敲低circABHD3可抑制TGF-β1诱导的肝细胞纤维化标志物、EMT和线粒体损伤的表达。MEOX1可以直接结合到ABHD3的启动子上,促进其转录和随后circABHD3的产生。MEOX1敲低可通过抑制circABHD3抑制TGF-β1诱导的EMT和线粒体损伤。CircABHD3通过促进ythdf2依赖性m6a修饰的YPEL3 mRNA的识别来触发β-catenin信号激活,从而破坏YPEL3 mRNA的稳定性。此外,circABHD3沉默介导的EMT和线粒体损伤的抑制被YPEL3敲除和β-catenin信号的激活所抵消。在体内,circABHD3的缺失通过促进YPEL3表达和抑制β-catenin信号传导,显著减少了EMT、线粒体损伤和肝纤维化。结论:meox1介导的circABHD3的生成通过增强ythdf2介导的YPEL3 mRNA降解和激活下游β-catenin信号通路,从而促进EMT和线粒体损伤,从而加剧肝纤维化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信