Sindhura D N, Radhika M Pai, Shyamasunder N Bhat, Manohara Pai M M
{"title":"Assessment of perceived realism in AI-generated synthetic spine fracture CT images.","authors":"Sindhura D N, Radhika M Pai, Shyamasunder N Bhat, Manohara Pai M M","doi":"10.1177/09287329241291368","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundDeep learning-based decision support systems require synthetic images generated by adversarial networks, which require clinical evaluation to ensure their quality.ObjectiveThe study evaluates perceived realism of high-dimension synthetic spine fracture CT images generated Progressive Growing Generative Adversarial Networks (PGGANs).<b>Method:</b> The study used 2820 spine fracture CT images from 456 patients to train an PGGAN model. The model synthesized images up to 512 × 512 pixels, and the realism of the generated images was assessed using Visual Turing Tests and Fracture Identification Test. Three spine surgeons evaluated the images, and clinical evaluation results were statistically analysed.<b>Result:</b> Spine surgeons have an average prediction accuracy of nearly 50% during clinical evaluations, indicating difficulty in distinguishing between real and generated images. The accuracy varies for different dimensions, with synthetic images being more realistic, especially in 512 × 512-dimension images. During FIT, among 16 generated images of each fracture type, 13-15 images were correctly identified, indicating images are more realistic and clearly depict fracture lines in 512 × 512 dimensions.ConclusionThe study reveals that AI-based PGGAN can generate realistic synthetic spine fracture CT images up to 512 × 512 pixels, making them difficult to distinguish from real images, and improving the automatic spine fracture type detection system.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":"33 2","pages":"931-944"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329241291368","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundDeep learning-based decision support systems require synthetic images generated by adversarial networks, which require clinical evaluation to ensure their quality.ObjectiveThe study evaluates perceived realism of high-dimension synthetic spine fracture CT images generated Progressive Growing Generative Adversarial Networks (PGGANs).Method: The study used 2820 spine fracture CT images from 456 patients to train an PGGAN model. The model synthesized images up to 512 × 512 pixels, and the realism of the generated images was assessed using Visual Turing Tests and Fracture Identification Test. Three spine surgeons evaluated the images, and clinical evaluation results were statistically analysed.Result: Spine surgeons have an average prediction accuracy of nearly 50% during clinical evaluations, indicating difficulty in distinguishing between real and generated images. The accuracy varies for different dimensions, with synthetic images being more realistic, especially in 512 × 512-dimension images. During FIT, among 16 generated images of each fracture type, 13-15 images were correctly identified, indicating images are more realistic and clearly depict fracture lines in 512 × 512 dimensions.ConclusionThe study reveals that AI-based PGGAN can generate realistic synthetic spine fracture CT images up to 512 × 512 pixels, making them difficult to distinguish from real images, and improving the automatic spine fracture type detection system.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).