Evolution of canonical circadian clock genes underlies unique sleep strategies of marine mammals for secondary aquatic adaptation.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
PLoS Genetics Pub Date : 2025-03-18 eCollection Date: 2025-03-01 DOI:10.1371/journal.pgen.1011598
Daiqing Yin, Zhaomin Zhong, Fan Zeng, Zhikang Xu, Jing Li, Wenhua Ren, Guang Yang, Han Wang, Shixia Xu
{"title":"Evolution of canonical circadian clock genes underlies unique sleep strategies of marine mammals for secondary aquatic adaptation.","authors":"Daiqing Yin, Zhaomin Zhong, Fan Zeng, Zhikang Xu, Jing Li, Wenhua Ren, Guang Yang, Han Wang, Shixia Xu","doi":"10.1371/journal.pgen.1011598","DOIUrl":null,"url":null,"abstract":"<p><p>To satisfy the needs of sleeping underwater, marine mammals, including cetaceans, sirenians, and pinnipeds, have evolved an unusual form of sleep, known as unihemispheric slow-wave sleep (USWS), in which one brain hemisphere is asleep while the other is awake. All aquatic cetaceans have only evolved USWS without rapid eye movement (REM) sleep, whereas aquatic sirenians and amphibious pinnipeds display both bihemispheric slow-wave sleep (BSWS) and USWS, as well as REM sleep. However, the molecular genetic changes underlying USWS remain unknown. The present study investigated the evolution of eight canonical circadian genes and found that positive selection occurred mainly within cetacean lineages. Furthermore, convergent evolution was observed in lineages with USWS at three circadian clock genes. Remarkably, in vitro assays showed that cetacean-specific mutations increased the nuclear localization of zebrafish clocka, and enhanced the transcriptional activation activity of Clocka and Bmal1a. In vivo, transcriptome analysis showed that the overexpression of the cetacean-specific mutant clocka (clocka-mut) caused the upregulation of the wakefulness-promoting glutamatergic genes and the differential expression of multiple genes associated with sleep regulation. In contrast, the GABAergic and cholinergic pathways, which play important roles in promoting sleep, were downregulated in the bmal1a-mut-overexpressing zebrafish. Concordantly, sleep time of zebrafish overexpressing clocka-mut and bmal1a-mut were significantly less than the zebrafish overexpressing the wild-type genes, respectively. These findings support our hypothesis that canonical circadian clock genes may have evolved adaptively to enhance circadian regulation ability relating to sleep in cetaceans and, in turn, contribute to the formation of USWS.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011598"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919277/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011598","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

To satisfy the needs of sleeping underwater, marine mammals, including cetaceans, sirenians, and pinnipeds, have evolved an unusual form of sleep, known as unihemispheric slow-wave sleep (USWS), in which one brain hemisphere is asleep while the other is awake. All aquatic cetaceans have only evolved USWS without rapid eye movement (REM) sleep, whereas aquatic sirenians and amphibious pinnipeds display both bihemispheric slow-wave sleep (BSWS) and USWS, as well as REM sleep. However, the molecular genetic changes underlying USWS remain unknown. The present study investigated the evolution of eight canonical circadian genes and found that positive selection occurred mainly within cetacean lineages. Furthermore, convergent evolution was observed in lineages with USWS at three circadian clock genes. Remarkably, in vitro assays showed that cetacean-specific mutations increased the nuclear localization of zebrafish clocka, and enhanced the transcriptional activation activity of Clocka and Bmal1a. In vivo, transcriptome analysis showed that the overexpression of the cetacean-specific mutant clocka (clocka-mut) caused the upregulation of the wakefulness-promoting glutamatergic genes and the differential expression of multiple genes associated with sleep regulation. In contrast, the GABAergic and cholinergic pathways, which play important roles in promoting sleep, were downregulated in the bmal1a-mut-overexpressing zebrafish. Concordantly, sleep time of zebrafish overexpressing clocka-mut and bmal1a-mut were significantly less than the zebrafish overexpressing the wild-type genes, respectively. These findings support our hypothesis that canonical circadian clock genes may have evolved adaptively to enhance circadian regulation ability relating to sleep in cetaceans and, in turn, contribute to the formation of USWS.

典型生物钟基因的进化是海洋哺乳动物适应水生环境的独特睡眠策略的基础。
为了满足水下睡眠的需要,海洋哺乳动物,包括鲸目动物、海蛞蝓和鳍足动物,进化出了一种不寻常的睡眠方式,被称为单半球慢波睡眠(USWS),在这种睡眠方式中,大脑的一个半球处于睡眠状态,而另一个半球处于清醒状态。所有的水生鲸目动物都只进化出无快速眼动睡眠(REM)的USWS,而水生海蛞蝓和两栖鳍足类动物同时表现出双脑慢波睡眠(BSWS)和USWS,以及REM睡眠。然而,USWS背后的分子遗传变化仍然未知。本研究调查了8个典型的昼夜节律基因的进化,发现正选择主要发生在鲸类谱系中。此外,在三个生物钟基因存在USWS的谱系中观察到趋同进化。值得注意的是,体外实验表明,鲸类特异性突变增加了斑马鱼clockka的核定位,并增强了clockka和Bmal1a的转录激活活性。在体内,转录组分析显示,鲸类特异性突变体clockka (clocka-mut)的过表达导致促进觉醒的谷氨酸能基因上调,以及与睡眠调节相关的多个基因的差异表达。相比之下,在促进睡眠中起重要作用的gaba能和胆碱能通路在bmal1a- mut1过表达的斑马鱼中下调。同时,过表达clocka-mut和bmal1a-mut的斑马鱼的睡眠时间也明显少于过表达野生型基因的斑马鱼。这些发现支持了我们的假设,即规范的生物钟基因可能已经进化出适应性地增强了与鲸类动物睡眠相关的昼夜节律调节能力,从而促进了USWS的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信