S M Vijayarajan, V Purna Chandra Reddy, D Marlene Grace Verghese, Dattatray G Takale
{"title":"FCM-NPOA: A hybrid Fuzzy C-means clustering with nomadic people optimizer for ovarian cancer detection.","authors":"S M Vijayarajan, V Purna Chandra Reddy, D Marlene Grace Verghese, Dattatray G Takale","doi":"10.1177/09287329241302736","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer is a highly prevalent cancer among women; However, it remains difficult to find effective pharmacological solutions to treat this deadly disease. However, early detection can significantly increase life expectancy. To address this issue, a predictive model for early diagnosis of ovarian cancer was developed by applying statistical techniques and machine learning models to clinical data from 349 patients. A hybrid evolutionary deep learning model was proposed by integrating genetic and histopathological imaging modalities within a multimodal fusion framework. Machine learning pipelines have been built using feature selection and dilution approaches to identify the most relevant genes for disease classification. A comparison was performed between the UNeT and transformer models for semantic segmentation, leading to the development of an optimized fuzzy C-means clustering algorithm (FCM-NPOA-PM-UI) for the classification of gynecological abdominopelvic tumors. Performing better than individual classifiers and other machine learning methods, the suggested ensemble model achieved an average accuracy of 98.96%, precision of 97.44%, and F1 score of 98.7%. With average Dice scores of 0.98 and 0.97 for positive tumors and 0.99 and 0.98 for malignant tumors, the Transformer model performed better in segmentation than the UNeT model. Additionally, we observed a 92.8% increase in accuracy when combining five machine learning models with biomarker data: random forest, logistic regression, SVM, decision tree, and CNN. These results demonstrate that the hybrid model significantly improves the accuracy and efficiency of ovarian cancer detection and classification, offering superior performance compared to traditional methods and individual classifiers.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"9287329241302736"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329241302736","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian cancer is a highly prevalent cancer among women; However, it remains difficult to find effective pharmacological solutions to treat this deadly disease. However, early detection can significantly increase life expectancy. To address this issue, a predictive model for early diagnosis of ovarian cancer was developed by applying statistical techniques and machine learning models to clinical data from 349 patients. A hybrid evolutionary deep learning model was proposed by integrating genetic and histopathological imaging modalities within a multimodal fusion framework. Machine learning pipelines have been built using feature selection and dilution approaches to identify the most relevant genes for disease classification. A comparison was performed between the UNeT and transformer models for semantic segmentation, leading to the development of an optimized fuzzy C-means clustering algorithm (FCM-NPOA-PM-UI) for the classification of gynecological abdominopelvic tumors. Performing better than individual classifiers and other machine learning methods, the suggested ensemble model achieved an average accuracy of 98.96%, precision of 97.44%, and F1 score of 98.7%. With average Dice scores of 0.98 and 0.97 for positive tumors and 0.99 and 0.98 for malignant tumors, the Transformer model performed better in segmentation than the UNeT model. Additionally, we observed a 92.8% increase in accuracy when combining five machine learning models with biomarker data: random forest, logistic regression, SVM, decision tree, and CNN. These results demonstrate that the hybrid model significantly improves the accuracy and efficiency of ovarian cancer detection and classification, offering superior performance compared to traditional methods and individual classifiers.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).