{"title":"Duple-MONDNet: duple deep learning-based mobile net for motor neuron disease identification.","authors":"Sony Helen, Joseph Jawhar","doi":"10.55730/1300-0144.5952","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Motor neuron disease (MND) is a devastating neuron ailment that affects the motor neurons that regulate muscular voluntary actions. It is a rare disorder that gradually destroys aspects of neurological function. In general, MND arises as a result of a combination of natural, behavioral, and genetic influences. However, early detection of MND is a challenging task and manual identification is time-consuming. To overcome this, a novel deep learning-based duple feature extraction framework is proposed for the early detection of MND.</p><p><strong>Materials and methods: </strong>Diffusion tensor imaging tractography (DTI) images were initially analyzed for color and textural features using dual feature extraction. Local binary pattern (LBP)-based methods were used to extract textural data from images by examining nearby pixel values. A color information feature was then added to the LBP-based feature during the classification phase for extracting color features. A flattened image was then fed into the MONDNet for classifying normal and abnormal cases of MND based on color and texture features.</p><p><strong>Results: </strong>The proposed deep MONDNet is suitable because it achieved a detection rate of 99.66% and can identify MND in its early stages.</p><p><strong>Conclusion: </strong>The proposed mobile net model achieved an overall F1 score of 13.26%, 6.15%, 5.56%, and 5.96% compared to the BPNN, CNN, SVM-RFE, and MLP algorithms, respectively.</p>","PeriodicalId":23361,"journal":{"name":"Turkish Journal of Medical Sciences","volume":"55 1","pages":"140-151"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913516/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.55730/1300-0144.5952","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aim: Motor neuron disease (MND) is a devastating neuron ailment that affects the motor neurons that regulate muscular voluntary actions. It is a rare disorder that gradually destroys aspects of neurological function. In general, MND arises as a result of a combination of natural, behavioral, and genetic influences. However, early detection of MND is a challenging task and manual identification is time-consuming. To overcome this, a novel deep learning-based duple feature extraction framework is proposed for the early detection of MND.
Materials and methods: Diffusion tensor imaging tractography (DTI) images were initially analyzed for color and textural features using dual feature extraction. Local binary pattern (LBP)-based methods were used to extract textural data from images by examining nearby pixel values. A color information feature was then added to the LBP-based feature during the classification phase for extracting color features. A flattened image was then fed into the MONDNet for classifying normal and abnormal cases of MND based on color and texture features.
Results: The proposed deep MONDNet is suitable because it achieved a detection rate of 99.66% and can identify MND in its early stages.
Conclusion: The proposed mobile net model achieved an overall F1 score of 13.26%, 6.15%, 5.56%, and 5.96% compared to the BPNN, CNN, SVM-RFE, and MLP algorithms, respectively.
期刊介绍:
Turkish Journal of Medical sciences is a peer-reviewed comprehensive resource that provides critical up-to-date information on the broad spectrum of general medical sciences. The Journal intended to publish original medical scientific papers regarding the priority based on the prominence, significance, and timeliness of the findings. However since the audience of the Journal is not limited to any subspeciality in a wide variety of medical disciplines, the papers focusing on the technical details of a given medical subspeciality may not be evaluated for publication.