João Capela, João Cheixo, Dick de Ridder, Oscar Dias, Miguel Rocha
{"title":"Predicting precursors of plant specialized metabolites using DeepMol automated machine learning.","authors":"João Capela, João Cheixo, Dick de Ridder, Oscar Dias, Miguel Rocha","doi":"10.1515/jib-2024-0050","DOIUrl":null,"url":null,"abstract":"<p><p>Plants produce specialized metabolites, which play critical roles in defending against biotic and abiotic stresses. Due to their chemical diversity and bioactivity, these compounds have significant economic implications, particularly in the pharmaceutical and agrotechnology sectors. Despite their importance, the biosynthetic pathways of these metabolites remain largely unresolved. Automating the prediction of their precursors, derived from primary metabolism, is essential for accelerating pathway discovery. Using DeepMol's automated machine learning engine, we found that regularized linear classifiers offer optimal, accurate, and interpretable models for this task, outperforming state-of-the-art models while providing chemical insights into their predictions. The pipeline and models are available at the repository: https://github.com/jcapels/SMPrecursorPredictor.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2024-0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants produce specialized metabolites, which play critical roles in defending against biotic and abiotic stresses. Due to their chemical diversity and bioactivity, these compounds have significant economic implications, particularly in the pharmaceutical and agrotechnology sectors. Despite their importance, the biosynthetic pathways of these metabolites remain largely unresolved. Automating the prediction of their precursors, derived from primary metabolism, is essential for accelerating pathway discovery. Using DeepMol's automated machine learning engine, we found that regularized linear classifiers offer optimal, accurate, and interpretable models for this task, outperforming state-of-the-art models while providing chemical insights into their predictions. The pipeline and models are available at the repository: https://github.com/jcapels/SMPrecursorPredictor.