A hindered phenol containing PVC/CuO nanocomposites; study on the mechanical and thermooxidative properties.

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Turkish Journal of Chemistry Pub Date : 2024-12-27 eCollection Date: 2025-01-01 DOI:10.55730/1300-0527.3708
Mohsen Hajibeygi, Alireza Ghasemi
{"title":"A hindered phenol containing PVC/CuO nanocomposites; study on the mechanical and thermooxidative properties.","authors":"Mohsen Hajibeygi, Alireza Ghasemi","doi":"10.55730/1300-0527.3708","DOIUrl":null,"url":null,"abstract":"<p><p>The effect of synthesized 5-((4-hydroxy-3,5-di-tert-butylphenyl)diazenyl)isophthalic acid (HBA) containing a hindered phenol derivative on the thermooxidation, hydrochloric acid release time, and mechanical strength of PVC/CuO nanocomposites was studied. Moreover, 5-((4-hydroxy-2,5-dimethylphenyl)diazenyl)isophthalic acid (HMA) was synthesized for comparison of corresponding PVC nanocomposite properties. PVC nanocomposite thin films were prepared through in situ surface modification of CuO nanoparticles with HBA and HMA, individually, in the PVC solution. The XRD and FE-SEM results clarified the desirable dispersion of CuO nanoparticles. The PVC sample with loading of 5 wt% from each HBA and CuO was found to be the most thermally stable, which was confirmed by thermogravimetric analysis in inert conditions. The thermooxidation and Congo red test results revealed that the simultaneous loading of HBA and CuO nanoparticles into the PVC matrix could increase the initial thermal degradation and the stability times. Moreover, the PVC sample containing 2.5 wt% each from HBA and CuO nanoparticles exhibited tensile strength almost 20 MPa more than that of neat PVC.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"49 1","pages":"29-44"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3708","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of synthesized 5-((4-hydroxy-3,5-di-tert-butylphenyl)diazenyl)isophthalic acid (HBA) containing a hindered phenol derivative on the thermooxidation, hydrochloric acid release time, and mechanical strength of PVC/CuO nanocomposites was studied. Moreover, 5-((4-hydroxy-2,5-dimethylphenyl)diazenyl)isophthalic acid (HMA) was synthesized for comparison of corresponding PVC nanocomposite properties. PVC nanocomposite thin films were prepared through in situ surface modification of CuO nanoparticles with HBA and HMA, individually, in the PVC solution. The XRD and FE-SEM results clarified the desirable dispersion of CuO nanoparticles. The PVC sample with loading of 5 wt% from each HBA and CuO was found to be the most thermally stable, which was confirmed by thermogravimetric analysis in inert conditions. The thermooxidation and Congo red test results revealed that the simultaneous loading of HBA and CuO nanoparticles into the PVC matrix could increase the initial thermal degradation and the stability times. Moreover, the PVC sample containing 2.5 wt% each from HBA and CuO nanoparticles exhibited tensile strength almost 20 MPa more than that of neat PVC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Turkish Journal of Chemistry
Turkish Journal of Chemistry 化学-工程:化工
CiteScore
2.40
自引率
7.10%
发文量
87
审稿时长
3 months
期刊介绍: The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK). The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings. The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities. The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields. All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信